光谱学与光谱分析 |
|
|
|
|
|
The Fluorescence Detection of Oil Pollutants Based on Self-Weighted Alternating Trilinear Decomposition |
CHENG Peng-fei1,2, WANG Yu-tian1, CHEN Zhi-kun2, YANG Zhe1*, CAO Li-fang1 |
1. Measurement Technology and Instrument Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China 2. Electrical Engineering College, North China University of Science and Technology, Tangshan 063009, China |
|
|
Abstract The oil pollutants detector is designed in this paper. The pulse xenon lamp is used as light source; the step type multi-mode pure silica fiber is chosen to transmit the excitation and emission light. The asymmetric Czemy-Turner light path of high precision grating monochromator is adopted. The detector is applied to determine the fluorescence spectrum of diesel, gasoline and kerosene. The optimal excitation /emission wavelengths are: 290/330 nm (diesel),270/300 nm (gasoline) and 280/330 nm (kerosene). The detection limits are: diesel (0.025 mg·L-1), gasoline (0.042 mg·L-1) and kerosene(0.054 mg·L-1). The relative errors are: diesel(2.55%), gasoline(2.06%) and kerosene(1.71%). Experiment results show that the designed detector has high accuracy of measurement. The different concentration of diesel, gasoline and kerosene mixed solution is configured, and three dimensional fluorescence spectra being measured. The self-weighted alternating trilinear decomposition is adopted to decompose the spectrum data. The predicted concentration and recovery rate show that self-weighted alternating trilinear decomposition has high resolution for mixed oil substance.
|
Received: 2015-06-01
Accepted: 2015-10-05
|
|
Corresponding Authors:
YANG Zhe
E-mail: zheyang_her@163.com
|
|
[1] Cohen M A. Encyclopedia of Energy, Natural Resource, and Environmental Economics, 2013, (3): 121. [2] Peiris R H, Jaklewicz M, Budman H, et al. Water Research, 2013, 47(10): 3364. [3] Patra D. Sensors and Actuators B: Chemical, 2008, 129(2): 632. [4] Kavanagh R J, Burnison K B, Frank R A. Chemosphere, 2009, 76(1): 120. [5] Zhu Bingqi, Stephen A Pennell, David K Ryan. Microchemical Journal, 2014, (115): 51. [6] Hadi Parastar, Nadia Akvan. Analytica Chimica Acta, 2014, (816): 18. [7] Guo Weidong, Xu Jing, Wang Jiangping, et al. Journal of Environmental Sciences, 2010, 22(11): 1728. [8] Zhang Yunlin, Yin Yan, Feng Longqing, et al. Water Research, 2011, (45): 5110. [9] YANG Li-li, WANG Yu-tian, LU Xin-qiong(杨丽丽,王玉田,鲁信琼). Chinese Journal of Laser(中国激光), 2013, 40(6): 0615002. [10] WU Xi-jun, PAN Zhao, ZHAO Yan-peng, et al(吴希军,潘 钊,赵彦鹏,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2014, 34(8): 137. [11] ZHOU Qian-qian, SU Rong-guo, BAI Ying(周倩倩,苏荣国,白 莹). Environmental Science(环境科学), 2015, 36(1): 163. [12] LI Lin-jun, DU Shu-xin(李林军,杜树新). Chinese Journal of Analysis Laboratory(分析试验室), 2012, 31(10): 40. [13] Zhang Shurong, Wu Hailong, Yu Ruqin. Journal of Chemometrics, 2015, 29: 179. [14] PENG Ming-guo, DU Er-deng, SONG Cheng-jie, et al(彭明国,杜尔登,宋澄杰). Chinese Water & Wastewater(中国给水排水),2013, 29(23): 32. [15] Li Yong, Wu Hailong, Qing Xiangdong, et al. Chemometrics and Intelligent Laboratory Systems, 2013, (127): 177. [16] YANG Li, LIU De-long, WEI Yong-ju(杨 莉,刘德龙,魏永巨). Chinese Journal of Analysis Laboratory(分析试验室), 2015, 34(1): 22. [17] TANG Yuan-he, LIU Qing-song, MENG Lei, et al(唐远河,刘青松,蒙 磊,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2015, 35(2): 424.
|
[1] |
ZHU Xiang1, 2*, YUAN Chao-sheng1, CHENG Xue-rui1, LI Tao1, ZHOU Song1, ZHANG Xin1, DONG Xing-bang1, LIANG Yong-fu2, WANG Zheng2. Study on Performances of Transmitting Pressure and Measuring Pressure of [C4mim][BF4] by Using Spectroscopic Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1674-1678. |
[2] |
WANG Yi-ya1, WANG Yi-min1*, GAO Xin-hua2. The Evaluation of Literature and Its Metrological Statistics of X-Ray Fluorescence Spectrometry Analysis in China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1329-1338. |
[3] |
YAN Peng-cheng1, 2, ZHANG Chao-yin2*, SUN Quan-sheng2, SHANG Song-hang2, YIN Ni-ni1, ZHANG Xiao-fei2. LIF Technology and ELM Algorithm Power Transformer Fault Diagnosis Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1459-1464. |
[4] |
ZHANG Yu-yang, CHEN Mei-hua*, YE Shuang, ZHENG Jin-yu. Research of Geographical Origin of Sapphire Based on Three-Dimensional Fluorescence Spectroscopy: A Case Study in Sri Lanka and Laos Sapphires[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1508-1513. |
[5] |
JIANG Xiao-yu1, 2, LI Fu-sheng2*, WANG Qing-ya1, 2, LUO Jie3, HAO Jun1, 2, XU Mu-qiang1, 2. Determination of Lead and Arsenic in Soil Samples by X Fluorescence Spectrum Combined With CARS Variables Screening Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1535-1540. |
[6] |
ZHA Ling-ling1, 2, 3, WANG Wei2*, XIE Yu1, SHAN Chang-gong2, ZENG Xiang-yu2, SUN You-wen2, YIN Hao2, HU Qi-hou2. Observation of Variations of Ambient CO2 Using Portable FTIR
Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1036-1043. |
[7] |
AN Ying1, 2, 4, DING Jing3, LIN Chao2, LIU Zhi-liang1, 4*. Inversion Method of Chlorophyll Concentration Based on
Relative Reflection Depths[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1083-1091. |
[8] |
ZHANG Rui1, 2, 3, TANG Xin-yi1, 2, ZHU Wen-qing1, 2, 3. Research on Shortwave Infrared Multispectral Fluorescence Imaging of Mouse Vein[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1109-1116. |
[9] |
NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, YUE Yuan-bo2, HU Xue-qiang2, CHEN Yu2, LI Xiao-jia1, 2*. The Detection of Mercury in Solutions After Thermal Desorption-
Enrichment by Energy Dispersive X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1117-1121. |
[10] |
ZHAO Yue2, MA Feng-xiang2, WANG An-jing1*, LI Da-cheng1, SONG Yu-mei2, WU Jun1, CUI Fang-xiao1, LI Yang-yu1, CAO Zhi-cheng1. Research on Electric Breakdown Fault Diagnosis Model of Transformer Insulated Oil Based on Fluorescent Double-Color Ratio[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1134-1138. |
[11] |
PENG Wu-di1, NING Jia-lian2, CHEN Zhi-li1*, TANG Jin1, LIU Li-xi1, CHEN Lin1. Construction of CS2 Combustion Flame Spectral Radiation Model and Inversion of Characteristic Pollution Product Concentration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 672-677. |
[12] |
CUI Ming-fang1, ZHU Jian-hua2*, HU Rui1, CHEN Shang-qian3. Research on the Chemical Composition and Process Feature of Ancient Porcelain Produced in Dongmendu Kiln[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 726-731. |
[13] |
WANG Ai-chen1, 4, GAO Bin-jie1, ZHAO Chun-jiang1, 2, XU Yi-fei3, 4, WANG Miao-lin1, YAN Shu-gang1, LI Lin1, WEI Xin-hua1*. Detecting Green Plants Based on Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 788-794. |
[14] |
LI Ying-ying1, ZHANG Zhi-qing1*, WU Xiao-hong2, Andy Hsitien Shen1*. Photoluminescence in Indonesian Fossil Resins[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 814-820. |
[15] |
YANG Xin1, 2, WU Zhi-hang3, YE Yin1, 2*, CHEN Xiao-fang1, 2, YUAN Zi-ran1, 2, WANG Jing1, 2. Parallel Factor Analysis of Fluorescence Excitation Emission Matrix Spectroscopy of DOM in Waters of Agricultural Watershed of Dianbu River[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 978-983. |
|
|
|
|