光谱学与光谱分析 |
|
|
|
|
|
Assessment of Influence Detective Position Variability on Precision of Near Infrared Models for Soluble Solid Content of Watermelon |
QIAN Man1, 2, 3, 4, HUANG Wen-qian2, 3, 4, WANG Qing-yan2, 3, 4, FAN Shu-xiang1, 2, 3, 4, ZHANG Bao-hua2, 3, 4, CHEN Li-ping1, 2, 3, 4* |
1. College of Mechanical and Electronic Engineering, Northwest Agricultural and Forestry University, Yangling 712100, China 2. National Research Center of Intelligent Equipment for Agriculture, Beijing 100097,China 3. Key Laboratory of Agri-informatics, Ministry of Agriculture, Beijing 100097, China 4. Beijing Key Laboratory of Intelligent Equipment Technology for Agriculture, Beijing 100097, China |
|
|
Abstract Non-destructive detection for soluble solids content (SSC) is important to improve watermelon’s internal quality, which attracts more and more attention from consumers. In order to realize the precise detection for SSC of mini watermelon’s whole surface by using Near-infrared (NIR) spectroscopy and reduce the influence of detective position variability on the accuracy of NIR prediction model for SSC, the diffused transmission spectra and soluble solids content were collected from three different detective positions of ‘jingxiu’ watermelon, including the equator, calyx and stem. The prediction models of single detective position and mixed three detective positions for SSC were established with Partial least square (PLS). Successive projections algorithm (SPA) and competitive adaptive reweighted sampling (CARS) were adopted to select effective variables of NIR spectroscopy for SSC of watermelon as well. The results showed that the prediction model of mixed three detective positions was better than the model of single detective position. Meanwhile, 42 characteristic variables of NIR spectroscopy selected with CARS were used to establish PLS prediction model for SSC. The prediction model was simplified significantly and the prediction accuracy for SSC was improved greatly. The correlation coefficient of prediction (RP) and root mean square error of prediction (RMSEP) by CARS-PLS were 0.892, 0.684 °Brix for the equator, 0.905, 0.621 °Brix for the calyx, 0.899, 0.721 °Brix for the stem, respectively. However, the prediction result of SPA-PLS established by 19 characteristic wavelength variables of NIR spectroscopy was bad for the equator, calyx and stem detective positions. The correlation coefficient of prediction (RP) is less than 0.752 and root mean square error of prediction (RMSEP) is relatively high. It was proposed that the PLS prediction model established by mixed three different detective positions with effective characteristic wavelength variables selected by CARS can improve the prediction accuracy for SSC. And the CARS-PLS prediction model can achieve fast and precise detection for SSC of mini watermelon’s whole surface. The influence of detective position variability on the accuracy of NIR prediction model could be reduced simultaneously. Thispaper could provide theoretical basis for calibrating NIR prediction model for SSC of mini watermelon. It also could provide reference for developing the portable and non-destructive detection equipment for soluble solids content of mini watermelon’s whole surface.
|
Received: 2015-04-17
Accepted: 2015-08-20
|
|
Corresponding Authors:
CHEN Li-ping
E-mail: chenlp@nercita.org.cn
|
|
[1] ZHANG Jun-jie, CHENG Zhi-qiang(张俊杰, 程志强). Southern Horticulture(南方园艺), 2013 (2): 49. [2] Mendoza F, Lu R, Ariana D, et al. Postharvest Biology and Technology, 2011, 62(2): 149. [3] Nicola B M, Defraeye T, De Ketelaere B, et al. Annual Review of Food Science and Technology, 2014, 5: 285. [4] JIE Deng-fei, CHEN Meng, XIE Li-juan, et al(介邓飞, 陈 猛, 谢丽娟, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2014, 30(9): 229. [5] HAN Dong-hai, CHANG Dong, SONG Shu-hui, et al(韩东海, 常 冬, 宋曙辉, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2013, 44(7): 174. [6] Xiaobo Z, Jiewen Z, Xingyi H, et al. Chemometrics and Intelligent Laboratory Systems, 2007, 87(1): 43. [7] JIE Deng-fei, XIE Li-juan, RAO Xiu-qin, et al(介邓飞, 谢丽娟, 饶秀勤, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2013, 29(12): 264. [8] CAO Jian-kang, JIANG Wei-bo, ZHAO Yu-mei(曹建康, 姜微波, 赵玉梅). Experiment Guidance of Postharvest Physiology and Biochemistry of Fruits and Vegetables(果蔬采后生理生化实验指导). Beijing: China Light Industry Press(北京: 中国轻工业出版社), 2007. [9] TIAN Hai-qing, YING Yi-bin, XU Hui-rong, et al(田海清, 应义斌, 徐惠荣, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2007, 38(5): . [10] Wold S, Sjstrm M, Eriksson L. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2): 109. [11] Li J, Huang W, Zhao C, et al. Journal of Food Engineering, 2013, 116(2): 324. [12] HUANG Wen-qian, LI Jiang-bo, CHEN Li-ping, et al(黄文倩, 李江波, 陈立平, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2013, 33(10): 2843. [13] Li H, Liang Y, Xu Q, et al. Analytica Chimica Acta, 2009, 648(1): 77. [14] FAN Shu-xiang, HUANG Wen-qian, GUO Zhi-ming, et al(樊书祥, 黄文倩, 郭志明, 等). Analytical Chemistry(分析化学), 2015, 2: 016. |
[1] |
WANG Xue-pei1, 2, ZHANG Lu-wei1, 2, BAI Xue-bing3, MO Xian-bin1, ZHANG Xiao-shuan1, 2*. Infrared Spectral Characterization of Ultraviolet Ozone Treatment on Substrate Surface for Flexible Electronics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1867-1873. |
[2] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[3] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[4] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[5] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[6] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[7] |
PENG Yan-fang1, WANG Jun1, WU Zhi-sheng2*, LIU Xiao-na3, QIAO Yan-jiang2*. NIR Band Assignment of Tanshinone ⅡA and Cryptotanshinone by
2D-COS Technology and Model Application Tanshinone Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1781-1785. |
[8] |
WANG Li-qi1, YAO Jing1, WANG Rui-ying1, CHEN Ying-shu1, LUO Shu-nian2, WANG Wei-ning2, ZHANG Yan-rong1*. Research on Detection of Soybean Meal Quality by NIR Based on
PLS-GRNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1433-1438. |
[9] |
FU Yan-hua1, LIU Jing2*, MAO Ya-chun2, CAO Wang2, HUANG Jia-qi2, ZHAO Zhan-guo3. Experimental Study on Quantitative Inversion Model of Heavy Metals in Soda Saline-Alkali Soil Based on RBF Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1595-1600. |
[10] |
LI Jia-yi1, YU Mei1, LI Mai-quan1, ZHENG Yu2*, LI Pao1, 3*. Nondestructive Identification of Different Chrysanthemum Varieties Based on Near-Infrared Spectroscopy and Pattern Recognition Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1129-1133. |
[11] |
CHEN Chu-han1, ZHONG Yang-sheng2, WANG Xian-yan3, ZHAO Yi-kun1, DAI Fen1*. Feature Selection Algorithm for Identification of Male and Female
Cocoons Based on SVM Bootstrapping Re-Weighted Sampling[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1173-1178. |
[12] |
LI Xue-ying1, 2, LI Zong-min3*, CHEN Guang-yuan4, QIU Hui-min2, HOU Guang-li2, FAN Ping-ping2*. Prediction of Tidal Flat Sediment Moisture Content Based on Wavelet Transform[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1156-1161. |
[13] |
ZHANG Xiao-hong1, JIANG Xue-song1*, SHEN Fei2*, JIANG Hong-zhe1, ZHOU Hong-ping1, HE Xue-ming2, JIANG Dian-cheng1, ZHANG Yi3. Design of Portable Flour Quality Safety Detector Based on Diffuse
Transmission Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1235-1242. |
[14] |
ZHENG Kai-yi1, ZHANG Wen1, DING Fu-yuan1, ZHOU Chen-guang1, SHI Ji-yong1, Yoshinori Marunaka2, ZOU Xiao-bo1*. Using Ensemble Refinement (ER) Method to OptimizeTransfer Set of Near-Infrared Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1323-1328. |
[15] |
CHENG Jie-hong1, CHEN Zheng-guang1, 2*, YI Shu-juan2. Wavelength Selection Algorithm Based on Minimum Correlation Coefficient for Multivariate Calibration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 719-725. |
|
|
|
|