光谱学与光谱分析 |
|
|
|
|
|
Research Progress of Electromagnetic Metasurface Used for Radar Cross Section Reduction in Microwave and Terahertz Wave |
YAN Xin1, 2, LIANG Lan-ju1,2*, ZHANG Ya-ting1, DING Xin1, YAO Jian-quan1* |
1. College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China2. School of Opto-Electronic Engineering, Zaozhuang University, Zaozhuang 277160, China |
|
|
Abstract Electromagnetic metasurface with many special electromagnetic properties can be utilized to manipulate electromagnetic wave propagation and reflection. If the metasurfaces were designed for coding, random, phase discontinuities, perfect absorber and so on,they can manipulate the scattering or the reflection of electromagnetic wave and achieve the reduction of the radar cross section(RCS). This paper mainly presents the recent progress concerning the reduction of RCS using non - directional scattering or the absorption characteristic in microwave and terahertz wave. The analysis results show that coding electromagnetic metasurface can disperse the reflection into a variety of direction by designing the specific coding sequences for different elements. The coding metasurface which are composed of different digital elements, and the reflection phase difference of these digital elements is constant in a wide frequency range, and higher bit coding metasurface can flexible manipulate electromagnetic wave. The random electromagnetic metasurface can achieve broadband phase shifter by adjusting the size parameters of array element, and can diffuse characteristic by scattering into random wave of the reflection peaks for metal target. Phase discontinuities metasurface can achieve anomalous or diffuse of wave because the phase distribution is not uniform at the surface. The absorber metasurfaces which are designed reasonably with the physical dimensions of the devices can reduce reflection by absorbing electromagnetic wave energy. So, the electromagnetic metasurfaces have a large potential application for radar stealth, broadband communications, imaging and so on. Finally, we discussed the future development of RCS reduction by using the electromagnetic metasurface. In order to satisfy the needs of practical application, the research of metasurface will continue development in broadband, flexible, large angle and other aspects.
|
Received: 2015-01-22
Accepted: 2015-05-16
|
|
Corresponding Authors:
LIANG Lan-ju, YAO Jian-quan
E-mail: lianglanju123@163.com;jqyao@tju.edu.cn
|
|
[1] Shelby R A, Smith D R, Schultz S. Science, 2001, 292: 77. [2] Liu Z, Lee H, Xiong Y, et al. Science, 2007, 315: 1686. [3] Zheludev N I. Science, 2010, 328: 582. [4] Cooper K B, Dengler R Llombart, J N B, et al. IEEE Trans. Terahertz Sci. Technol., 2011, 1: 169. [5] Wu X, Quan B, Pan X, et al. Biosens. Bioelectron, 2013, 42: 626. [6] Liang L J, Jin B B, Wu J B. et al. Appl. Phys. B-Lasers. O, 2013, 113: 285. [7] Danylov A A, Goyette T M, Waldman J. et al. Opt. Express, 2010, 18: 16264. [8] Chen J, Cheng Q, Zhao J. et al. Progress In Electromagnetics Research, 2014, 146: 71. [9] LI Yong-feng, ZHANG Jie-qiu, QU Shao-bo, et al(李勇峰, 张介秋,屈邵波,等). Acta Phys. Sin.(物理学报), 2014, 63: 084103. [10] Cao T, Wei C W, Simpson R E, et al. Science Reports, 2014, 4: 1. [11] Wang B X, Wang L L, et al. J. Lightwave Technol., 2014, 32: 1183. [12] Grady N K, Heyes J E, Chowdhury D R, et al. Science, 2013, 340: 1304. [13] Wang F W, Gong S X, Zhang S. et al. Progress in Electromagnetics Research, 2012, 25: 2487. [14] Yang X M, Zhou X Y, Cheng Q, et al. Opt. Lett., 2010, 35: 808. [15] Cui T J, Qi M Q, Wan X, et al. Light: Science & Applications, 2014, 3: e218. [16] Wang K, Zhao J, Cheng Q, et al. Scientific Reports, 2014, 4: 5395. [17] Li Y F, Zhang J Q, Qu S B, et al. Appl. Phys. Lett., 2014, 104: 221110. [18] Wang F W, Gong S X, Zhang S, et al. Progress In Electromagnetics Research, 2012, 25: 2487. [19] Yang H H, Cao X Y, Gao J, et al. Progress in Electromagnetics Research, 2013, 33: 31. [20] Iwaszczuk K, Strikwerda A C, Fan K, et al. Opt. Express, 2011, 20: 635. |
[1] |
LI Sheng-fang1,2, JIA Min-zhi1, DONG Da-ming2,3*. Fast Measurement of Sugar in Fruits Using Near Infrared Spectroscopy Combined with Random Forest Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1766-1771. |
[2] |
WU Ming-lei1, 2, PAN Jing-chang1*, YI Zhen-ping1, WEI Peng3. A Method to Fit Low-Quality Stellar Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 963-967. |
[3] |
MA Yue1, JIANG Qi-gang1*, MENG Zhi-guo1, 2, LIU Hua-xin1. Black Soil Organic Matter Content Estimation Using Hybrid Selection Method Based on RF and GABPSO[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 181-187. |
[4] |
TANG Xing-jia1, 2, LI Li-bo1*, ZHAO Qiang1, LI Hong-bo1, HU Bing-liang1. Study on Single Dispersion Spectral Imager Based on Compressed Coding[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2919-2926. |
[5] |
ZHOU Jie-qian1, LIU Zhen-bing2, YANG Hui-hua1, 2*, ZHENG An-bing1, PAN Xi-peng1, CAO Zhi-wei1, WU Kai-yu2, YANG Jin-xin1, FENG Yan-chun3, YIN Li-hui3, HU Chang-qin3. Pharmaceutical Discrimination by Using Sparse Denoising Autoencoder Combined with Gaussian Process Based on Near Infrared Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(08): 2412-2417. |
[6] |
YANG Liu1,2, FENG Zhong-ke1*, YUE De-peng1, SUN Jin-hua3. Forest Stock Volume Estimation Model Using Textural and Topographic Factors of Landsat8 OLI[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(07): 2140-2145. |
[7] |
HU Meng-han1,2, DONG Qing-li1*, LIU Bao-lin1* . Comparison of Predicting Blueberry Firmness and Elastic Modulus with Hyperspectral Reflectance, Transmittance and Interactance Imaging Modes [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3651-3656. |
[8] |
YANG Hui-hua1, 2, LUO Zhi-chao1, JIANG Shu-jie1, ZHANG Xue-bo3, YIN Li-hui3 . Sparse Denoising Autoencoder Application in Identification of Counterfeit Pharmaceutical [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(09): 2774-2779. |
[9] |
HAN Zhao-ying1, ZHU Xi-cun1, 2*, FANG Xian-yi1, WANG Zhuo-yuan1, WANG Ling1, ZHAO Geng-xing1, JIANG Yuan-mao3. Hyperspectral Estimation of Apple Tree Canopy LAI Based on SVM and RF Regression [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(03): 800-805. |
[10] |
WANG Jian-wei, PEI Lin-lin, LIU Yang-yang, Lü Qun-bo . Analysis of Influence of Pushroom Erros on The Data Reconstruction of Computational Imaging Spectrometer [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(01): 268-272. |
[11] |
LIU Ya-dong, CUI Ri-xian* . Segmentation of Winter Wheat Canopy Image Based on Visual Spectral and Random Forest Algorithm [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(12): 3480-3484. |
[12] |
GAO Kun1, LIU Ying1, WANG Li-jing1,2, ZHU Zhen-yu1, CHENG Hao-bo1 . A Hyperspectral Imagery Anomaly Detection Algorithm Based on Gauss-Markov Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(10): 2846-2850. |
[13] |
HUANG Tao1, LI Xiao-yu1*, JIN Rui1, KU Jing1, XU Sen-miao1, XU Meng-ling1, WU Zhen-zhong1, KONG De-guo1,2 . Multi-Target Recognition of Internal and External Defects of Potato by Semi-Transmission Hyperspectral Imaging and Manifold Learning Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(04): 992-996. |
[14] |
LIANG Wei1, ZENG Ping1, 2*, LUO Xue-mei1, WANG Yi-feng1, XIE Kun1 . Multispectral Image Compression Algorithms For Color Reproduction [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(01): 276-281. |
[15] |
MA Yuan1,2, Lü Qun-bo1*, LIU Yang-yang1, QIAN Lu-lu1, PEI Lin-lin1 . Effect Evaluation of Optical Magnification Errors for Coded Aperture Spectrometer [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(11): 3157-3161. |
|
|
|
|