光谱学与光谱分析 |
|
|
|
|
|
The Characteristic Spectral Selection Method Based on Forward and Backward Interval Partial Least Squares |
QU Fang-fang1, REN Dong1*, HOU Jin-jian1,2, ZHANG Zhong1, LU An-xiang2, WANG Ji-hua1,2, XU Hong-lei3 |
1. College of Computer and Information Technology, Three Gorges University, Yichang 443002, China 2. Beijing Research Center for Agricultural Standards and Testing, Beijing 100097, China 3. Department of Mathematics and Statistics, Curtin University, Perth 6845, Australia |
|
|
Abstract In the near-infrared spectroscopy, the Forward Interval Partial Least Squares (FiPLS) and Backward Interval Partial Least Squares (BiPLS) are commonly used modeling methods, which are based on the wavelength variable selection. These methods are usually of high prediction accuracy, but are strongly characteristic of greedy search, which causes that the intervals selected are not good enough to indicate the analyte information. To solve the problem, a spectral characteristic intervals selection strategy (FB-iPLS) based on the combination of FiPLS and BiPLS is proposed. On the basis of spectral segmentation, both FiPLSs are used to select useful intervals, and BiPLS is used to delete useless intervals, so as to perform the selection and deletion of the characteristic variables alternatively, which conducts a two-way choice of the target characteristic variables, and is used to improve the robustness of the model. The experiments on determining the ethanol concentration in pure water are conducted by modeling with FiPLS, BiPLS and the proposed method. Since different size of intervals will affect the result of the model, the experiments here will also examine the model results with different intervals of these three models. When the spectrum is divided into 60 segments, the FB-iPLS method obtains the best prediction performance. The correlation coefficients (r) of the calibration set and validation set are 0.967 7 and 0.967 0 respectively, and the cross-validation root mean square errors (RMSECV) are 0.088 8 and 0.057 1, respectively. Compared with FiPLS and BiPLS, the overall prediction performance of the proposed model is better. The experiments show that the proposed method can further improve the predictive performance of the model by resolving the greedy search feature against BiPLS and FiPLS, which is more efficient for and representative of the selection of characteristic intervals.
|
Received: 2014-11-25
Accepted: 2015-04-20
|
|
Corresponding Authors:
REN Dong
E-mail: rendong5227@163.com
|
|
[1] SUN Hong-ye. Changchun University of Science and Technology, 2014. [2] Mall U, Wohler C, Grumpe A, et al. Advances in Space Research, 2013. [3] Teye E, Huang X, Lei W, et al. Food Research International, 2014, 55: 288. [4] JIA Sheng-yao, TANG Xu, YANG Xiang-long, et al. Spectroscopy and Spectral Analysis, 2014, 34(8): 2070. [5] FAN Shu-xiang, HUANG Wen-qian, LI Jiang-bo, et al. Spectroscopy and Spectral Analysis, 2014, 34(8): 18. [6] SHI Ji-yong, ZHOU Xiao-bo, ZHAO Jie-wen, et al. Journal of Infrared and Millimeter Waves, 2011, 5: 458. [7] CHU Xiao-li. Molecular Spectroscopy Analytical Technology Combined with Chemometrics and Its Applications. Beijing: Chemical Industry Press, 2011. 4. [8] Suhandy D, Yulia M, Ogawa Y, et al. Engineering in Agriculture, Environment and Food, 2013, 6(3): 111. [9] ZHOU Xiao-bo, ZHAO Jie-wen, HUANG Xing-yi. Chinese Mechanical Engineering Society,2006. 6. [10] WANG Chun-peng, YU Zuo-jun, MENG Fan-qiang. Journal of Chemical Industry and Engineering, 2013, 12: 4592. [11] ZHAN Xiao-ri, ZHU Xiang-rong, SHI Xin-yuan, et al. Spectroscopy and Spectral Analysis, 2009, 29(4): 964. |
[1] |
WANG Xue-pei1, 2, ZHANG Lu-wei1, 2, BAI Xue-bing3, MO Xian-bin1, ZHANG Xiao-shuan1, 2*. Infrared Spectral Characterization of Ultraviolet Ozone Treatment on Substrate Surface for Flexible Electronics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1867-1873. |
[2] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[3] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[4] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[5] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[6] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[7] |
PENG Yan-fang1, WANG Jun1, WU Zhi-sheng2*, LIU Xiao-na3, QIAO Yan-jiang2*. NIR Band Assignment of Tanshinone ⅡA and Cryptotanshinone by
2D-COS Technology and Model Application Tanshinone Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1781-1785. |
[8] |
WANG Li-qi1, YAO Jing1, WANG Rui-ying1, CHEN Ying-shu1, LUO Shu-nian2, WANG Wei-ning2, ZHANG Yan-rong1*. Research on Detection of Soybean Meal Quality by NIR Based on
PLS-GRNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1433-1438. |
[9] |
FU Yan-hua1, LIU Jing2*, MAO Ya-chun2, CAO Wang2, HUANG Jia-qi2, ZHAO Zhan-guo3. Experimental Study on Quantitative Inversion Model of Heavy Metals in Soda Saline-Alkali Soil Based on RBF Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1595-1600. |
[10] |
LI Jia-yi1, YU Mei1, LI Mai-quan1, ZHENG Yu2*, LI Pao1, 3*. Nondestructive Identification of Different Chrysanthemum Varieties Based on Near-Infrared Spectroscopy and Pattern Recognition Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1129-1133. |
[11] |
CHEN Chu-han1, ZHONG Yang-sheng2, WANG Xian-yan3, ZHAO Yi-kun1, DAI Fen1*. Feature Selection Algorithm for Identification of Male and Female
Cocoons Based on SVM Bootstrapping Re-Weighted Sampling[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1173-1178. |
[12] |
LI Xue-ying1, 2, LI Zong-min3*, CHEN Guang-yuan4, QIU Hui-min2, HOU Guang-li2, FAN Ping-ping2*. Prediction of Tidal Flat Sediment Moisture Content Based on Wavelet Transform[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1156-1161. |
[13] |
ZHANG Xiao-hong1, JIANG Xue-song1*, SHEN Fei2*, JIANG Hong-zhe1, ZHOU Hong-ping1, HE Xue-ming2, JIANG Dian-cheng1, ZHANG Yi3. Design of Portable Flour Quality Safety Detector Based on Diffuse
Transmission Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1235-1242. |
[14] |
ZHENG Kai-yi1, ZHANG Wen1, DING Fu-yuan1, ZHOU Chen-guang1, SHI Ji-yong1, Yoshinori Marunaka2, ZOU Xiao-bo1*. Using Ensemble Refinement (ER) Method to OptimizeTransfer Set of Near-Infrared Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1323-1328. |
[15] |
CHENG Jie-hong1, CHEN Zheng-guang1, 2*, YI Shu-juan2. Wavelength Selection Algorithm Based on Minimum Correlation Coefficient for Multivariate Calibration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 719-725. |
|
|
|
|