光谱学与光谱分析 |
|
|
|
|
|
Fluorescence Properties and the Detection of Benzaldehyde of Lanthanide Complex with 2-Sufoterephthalalic Acid |
LI Jia-jia, LI Rui, MA Xue, FAN Ting-ting, LIN Yi-qing, SONG Yu-ting, HAN Jing-qi, LI Xia* |
Department of Chemistry, Capital Normal University, Beijing 100048, China |
|
|
Abstract A new lanthanide coordination polymer, [Eu(2-stp)(2,2’-bipy)(H2O)]·H2O (2-stp=2-sufoterephthalalic acid, 2,2’-bipy=2,2’-bipyridine) was obtained by hydrothermal method. The crystal structure was determined by single crystal X-ray diffraction. The complex has a one-dimensional parallel double-chain structure. Eu3+ is a nine-coordinated by six O atoms from three 2-sufoterephthalalic acids, one water molecule and two N atoms from 2,2’-bipyridine. The fluorescence properties of the complex were studied. The complex shows the characteristics narrow emission of Eu3+ ion at 581, 594, 619, 654 and 698 nm, corresponding to 5D0→7FJ (J=0~4) transitions. The strongest emission peak is at 619 nm, corresponding to 5D0→7F2 transition for red light. Different organic solvents have different effects on the fluorescence intensity of the complex, and benzaldehyde exerts the most significant fluorescence quenching effect. So, this complex can be used as a fluorescent sensing probe for benzaldehyde.
|
Received: 2014-08-13
Accepted: 2014-12-22
|
|
Corresponding Authors:
LI Xia
E-mail: xiali@cnu.edu.cn
|
|
[1] Hiroyasu F, Nakeun K, Yong B G. Science, 2010, 329: 424. [2] Mohamed E, Dorina F. S, Jarrod F. E. Chem. Soc. Rev., 2015, 44: 228. [3] Luís D Carlos, Rute A S F, Verónica de Zea Bermudez, et al. Chem. Soc. Rev., 2011, 40: 536. [4] Yong Y, Xiang L, Sihai Y. Chem. Commun., 2009: 1025. [5] Liangjun L, Jon G B, Sifu T. Chem. Mater., 2014, 26: 4679. [6] You Z, Hao-Hong C,Bing Y. J. Mater. Chem. A, 2014, 2: 13691. [7] DONG Gao-yun, MA Xue, LI Jia-jia, et al(董高云, 马 雪, 李佳佳,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2015, 35(8): 2208. [8] Huabin Z, Liujiang Z, Jing W. J. Mater. Chem., 2012, 22: 21210. [9] Dou M, Xia L and Rui H. J. Mater. Chem. C, 2014, 2: 9073. [10] Yixia R, Xiangjun Z, Li-Cun L. Inorg. Chem., 2014, 53: 12234. [11] Yixia R, Shanshan X, Xiangjun Z. Dalton Trans., 2012, 41: 2639. |
[1] |
ZHU Xiang1, 2*, YUAN Chao-sheng1, CHENG Xue-rui1, LI Tao1, ZHOU Song1, ZHANG Xin1, DONG Xing-bang1, LIANG Yong-fu2, WANG Zheng2. Study on Performances of Transmitting Pressure and Measuring Pressure of [C4mim][BF4] by Using Spectroscopic Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1674-1678. |
[2] |
WANG Yi-ya1, WANG Yi-min1*, GAO Xin-hua2. The Evaluation of Literature and Its Metrological Statistics of X-Ray Fluorescence Spectrometry Analysis in China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1329-1338. |
[3] |
YAN Ling-tong, LI Li, SUN He-yang, XU Qing, FENG Song-lin*. Spectrometric Investigation of Structure Hydroxyl in Traditional Ceramics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1361-1365. |
[4] |
HAN Bing1, SUN Dan-dan2*, WAN Wei-hao1, WANG Hui3, DONG Cai-chang2, ZHAO Lei3, WANG Hai-zhou3*. Element Segregation of Cast-Rolled 7B05 Aluminum Alloy Based on
Microbeam X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1413-1419. |
[5] |
YAN Peng-cheng1, 2, ZHANG Chao-yin2*, SUN Quan-sheng2, SHANG Song-hang2, YIN Ni-ni1, ZHANG Xiao-fei2. LIF Technology and ELM Algorithm Power Transformer Fault Diagnosis Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1459-1464. |
[6] |
ZHANG Yu-yang, CHEN Mei-hua*, YE Shuang, ZHENG Jin-yu. Research of Geographical Origin of Sapphire Based on Three-Dimensional Fluorescence Spectroscopy: A Case Study in Sri Lanka and Laos Sapphires[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1508-1513. |
[7] |
JIANG Xiao-yu1, 2, LI Fu-sheng2*, WANG Qing-ya1, 2, LUO Jie3, HAO Jun1, 2, XU Mu-qiang1, 2. Determination of Lead and Arsenic in Soil Samples by X Fluorescence Spectrum Combined With CARS Variables Screening Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1535-1540. |
[8] |
BAI Lu1, 2, XU Xiong1, LIU Quan-zhen1, 2, DU Yan-jun1, 2, 3, WANG Dong-hong1, 2*. Characterization and Analysis of Dissolved Organic Matter in Different
Types of Natural Water in Wuhan by Three-Dimensional
Fluorescence Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1642-1647. |
[9] |
LI Xiao-li1, GAO Xin-hua2, WANG Yi-min3*, DENG Sai-wen3, WANG Yi-ya3, LI Song3. Review on the Application of X-Ray Fluorescence Spectrometry in Halogen Elements Analysis in Geological Materials[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 997-1009. |
[10] |
ZHANG Zhao1, 2, 3, 4, YAO Zhi-feng1, 3, 4, WANG Peng1, 3, 4, SU Bao-feng1, 3, 4, LIU Bin3, 4, 5, SONG Huai-bo1, 3, 4, HE Dong-jian1, 3, 4*, XU Yan5, 6, 7, HU Jing-bo2. Early Detection of Plasmopara Viticola Infection in Grapevine Leaves Using Chlorophyll Fluorescence Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1028-1035. |
[11] |
OUYANG Zhou-xuan, MA Ying-jie, LI Dou-dou, LIU Yi. The Research of Polarized Energy Dispersive X-Ray Fluorescence for Measurement Trace Cadmium by Geant4 Simulation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1064-1069. |
[12] |
ZHANG Rui1, 2, 3, TANG Xin-yi1, 2, ZHU Wen-qing1, 2, 3. Research on Shortwave Infrared Multispectral Fluorescence Imaging of Mouse Vein[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1109-1116. |
[13] |
NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, YUE Yuan-bo2, HU Xue-qiang2, CHEN Yu2, LI Xiao-jia1, 2*. The Detection of Mercury in Solutions After Thermal Desorption-
Enrichment by Energy Dispersive X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1117-1121. |
[14] |
ZHAO Yue2, MA Feng-xiang2, WANG An-jing1*, LI Da-cheng1, SONG Yu-mei2, WU Jun1, CUI Fang-xiao1, LI Yang-yu1, CAO Zhi-cheng1. Research on Electric Breakdown Fault Diagnosis Model of Transformer Insulated Oil Based on Fluorescent Double-Color Ratio[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1134-1138. |
[15] |
PAN Qiu-li1, SHAO Jin-fa1, LI Rong-wu2, CHENG Lin1*, WANG Rong1. Non-Destructive Analysis of Red and Green Porcelain in Qing Dynasty[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 732-736. |
|
|
|
|