光谱学与光谱分析 |
|
|
|
|
|
Ce3+/Tb3+ Doped Alkaline-Earth Borate Glasses Employed in Enhanced Solar Cells |
YANG Peng1, 2, ZHAO Xin1, WANG Zhi-qiang2, LIN Hai1, 2* |
1. School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China2. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China |
|
|
Abstract Ce3+ and Tb3+ doped alkaline earth borate (LKZBSB) glasses and the photoluminescence properties of glass system have been fabricated and investigated, and the observed violet and green fluorescences are originated from Ce3+ and Tb3+ emitting centers, respectively. Four emission bands peaked at 487, 543, 586 and 621 nm are attributed to the emission transitions 5D4→7F6, 5D4→7F5, 5D4→7F4 and 5D4→7F3 of Tb3+, respectively, and consists of a broad emission band peaking at 389 nm attributed to 5d→4f electric dipole allowed transition of Ce3+. With the introduction of Ce3+, the effective excitation wavelength range of Tb3+ in LKZBSB glasses are remarkably expanded, and the enhanced factor of green fluorescence of Tb3+ in Ce3+/Tb3+ co-doped LKZBSB glasses is up to 73 times in medium-wavelength ultraviolet (UVB) excitation region, compared with that in Tb3+ single-doped case. The results show that the conversion from ultraviolet (UV) radiation to visible light is efficient in Ce3+/Tb3+ doped LKZBSB glasses, demonstrating that the glasses have potential values in developing enhanced solar cell as a conversion layer.
|
Received: 2014-09-16
Accepted: 2014-12-20
|
|
Corresponding Authors:
YANG Peng
E-mail: lhai@dlpu.edu.cn
|
|
[1] Liu L, Peter Y Y, Chen X B, et al. Phys. Rev. Lett., 2013, 111(6): 065505. [2] Liu Y, Wang H, Shen H, et al. Appl. Energ., 2010, 87(2): 436. [3] Gao C T, Li X D, Wang Y Q, et al. J. Power Sources, 2013, 239: 458. [4] Liu C Y, Chen H, Zhao D, et al. Appl. Phys. Lett., 2014, 105(5): 053301. [5] Tian Y, Tian B N, Chen B J, et al. Mater. Res. Bull., 2014, 53(0): 38. [6] Liu L L, Wang Q, Gao C J, et al. J. Phys. Chem. C , 2014, 118(26): 14511. [7] Qi J N, Xu Y S, Huang F, et al. J. Am. Ceram. Soc., 2014, 97(5): 1471. [8] Xue H Y, Xu Z Q, Zhang M Q, et al. J. Plast. Film Sheet., 2015, 31(3): 233. [9] Tian Q W, Wang G, Zhao W G, et al. Chem. Mater., 2014, 26(10): 3098. [10] Liu Y L, Song F, Liu J D, et al. Chem. Phys. Lett., 2013, 565: 98. [11] Lian H Z, Hou Z Y, Shang M M, et al. Energy, 2013, 57: 270. [12] Liu J, Yao Q, Li Y. Appl. Phys. Lett., 2006, 88(17): 17311. [13] Liu R, Qiang L S, Yang W D, et al. J. Power Sources, 2013, 223: 254. [14] Zhang Y, Wang R Z, Xiao S G, et al. J. Lumin., 2014, 145: 351. [15] Jia S J, Huang L H, Ma D L, et al. J. Lumin., 2014, 152: 241. [16] Xiang G T, Zhang J H, Hao Z D, et al. Phys. Chem. Chem. Phys., 2014, 16(20): 9289. [17] Zhou J J, Teng Y, Ye S, et al. Chem. Phys. Lett., 2010, 486: 116. [18] Zhang M, Zhang J, Fan Y, et al. Energy Environ. Sci., 2013, 6(10): 2939. [19] Zhang C M, Li C X, Peng C, et al. Chem. Eur. J., 2010, 16(19): 5672. [20] Wang Y H, Brik M G, Dorenbos P, et al. J. Phys. Chem. C, 2014, 118(13): 7002. [21] Xue X J, Wang L L, Huang L J, et al. Cryst. Eng. Comm., 2013, 15(15): 2897. [22] Zhou J J, Chen G X, Wu E, et al. Nano. Lett., 2013, 13(5): 2241. [23] Lin H, Chen D Q, Yu Y L, et al. Appl. Phys. Lett., 2013, 103(9): 091902. [24] Shen Y L, Zhang Q, Cheng J M, et al. Mater. Lett., 2013, 97: 151. [25] Li Y, Yu Q L, Huang L, et al. Opt. Mater. Express, 2014, 4(2): 227. [26] Yuan J L, Zeng X Y, Zhao J T, et al. J. Phys. D: Appl. Phys., 2008, 41(10): 105406. [27] Chen D Q, Yu Y L, Huang P, et al. Appl. Phys. Lett., 2009, 94(4): 041909. [28] Xia Z G, Liu R S. J. Phys. Chem. C, 2012, 116(29): 15604. [29] He D B, Yu C L, Cheng J M, et al. J. Alloys Compd., 2011, 509(5): 1906. |
[1] |
NIE Mei-tong1,2, XU De-gang1,2*, WANG Yu-ye1,2*, TANG Long-huang1,2, HE Yi-xin1,2, LIU Hong-xiang1,2, YAO Jian-quan1,2. Investigation on Characteristics of Edible Oil Spectra with Terahertz Time-Domain Attenuated Total Reflection Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2016-2020. |
[2] |
LIU Hai-ling1, ZHAI Dong-wei1, YANG Yu-ping1*, CUI Bin1, ZHANG Zhen-wei2, ZHANG Cun-lin2. Identification of True and Counterfeit Hundred RMB of the 2005 Edition Based on Transmitted THz Pulse Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2021-2025. |
[3] |
LI Zheng-hui1,3, YAO Shun-chun1,3*, LU Wei-ye2, ZHU Xiao-rui1,3, ZOU Li-chang1,3, LI Yue-sheng2, LU Zhi-min1,3. Study on Temperature Correction Method of CO2 Measurement by TDLAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2048-2053. |
[4] |
WANG Wen-xiu, PENG Yan-kun*, FANG Xiao-qian, BU Xiao-pu. Characteristic Variables Optimization for TVB-N in Pork Based on Two-Dimensional Correlation Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2094-2100. |
[5] |
TIAN Yuan-sheng1, ZHANG Yue1, SUN Wen-yi1, 2*, MU Xing-min1, 2, GAO Peng1, 2, ZHAO Guang-ju1, 2. Spectral Characteristics of Biological Soil Crusts under the Different Types in the Water-Wind Erosion Crisscross Region on the Loess Plateau[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2215-2220. |
[6] |
SUN Yan-wen1, CHANG Yu2, JIN Yu-fen1, XIE Wen-bing2, CHANG Jing1, YU Ting1*, PAN Li-hua2. Study of Synthesis and Spectral Property of Europium Cryptate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2189-2193. |
[7] |
KE Ke1, 2, Lü Yong1, 2, YI Can-can1, 2, 3*. Improvement of Convex Optimization Baseline Correction in Laser-Induced Breakdown Spectral Quantitative Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2256-2261. |
[8] |
TIAN Yuan, ZHAO Xin, LIN Hai, LI De-sheng*. Irradiation Parameters of Dy3+ Doped Fluoride Borate Glass Phosphors under Laser Excitation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1665-1669. |
[9] |
LI Yun1,2,3, ZHANG Ji1,2, LIU Fei4, XU Fu-rong3, WANG Yuan-zhong1,2*, ZHANG Jin-yu1,2,3*. Prediction of Total Polysaccharides Content in P. notoginseng Using FTIR Combined with SVR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1696-1701. |
[10] |
LIU Ming1, ZHAO Jing2*, WU Tai-xia4, ZHANG Li-fu4, TANG Hong-ying5, LU Xiao-zuo2, LI Gang3. Separation of Tongue Coat and Tongue Proper Based on Optical Spectrum Dissimilarity Index Using Double-Wavelength Ratio[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1798-1803. |
[11] |
PENG Heng, LIU Shuai, CHEN Xiang-bai*. Raman Study of Perovskite (C6H5CH2NH3)2PbBr4[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1763-1765. |
[12] |
ZHOU Mu-chun1, ZHAO Qi1, CHEN Yan-ru1, SHAO Yan-ming2. Carbon Content Measurement of BOF by Radiation Spectrum Based on Support Vector Machine Regression[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1804-1808. |
[13] |
YANG Bin1*, GUO Hao-ran1, GUI Xin-yang1, LIU Xin2, WANG Zhi-xin2, CHEN Xiao-long3, LIU Pei-jin2. On-Line Combustion Temperature Measurements of Solid Rocket Propellant by Using Radiation Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1958-1962. |
[14] |
WANG Yan1,2, LIU Zhi-min1,2, YAN Jing-yang1,2, LIANG Li-zhen1*, WEI Jiang-long1, HU Chun-dong1,2. A New Diagnostic Technique for Gas Target Thickness Based on the Doppler Shift Spectroscopy on Neutral Beam Injector[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1987-1992. |
[15] |
FAN Ning, SU Bo*, WU Ya-xiong, ZHANG Hong-fei, ZHANG Cong, ZHANG Sheng-bo, ZHANG Cun-lin. Sandwich Terahertz Microfluidic Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1362-1367. |
|
|
|
|