光谱学与光谱分析 |
|
|
|
|
|
Three-Dimensional Vertically Aligned CNTs Coated by Ag Nanoparticles for Surface-Enhanced Raman Scattering |
ZHANG Xiao-lei1, ZHANG Jie1*, FAN Tuo1, REN Wen-jie1, LAI Chun-hong1, 2 |
1. Key Laboratory for Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China2. School of Physics & Electronic Information, China West Normal University, Nanchong 637000, China |
|
|
Abstract In order to make surface-enhanced Raman scattering (SERS) substrates contained more “hot spots” in a three-dimensional (3D) focal volume, and can be adsorbed more probe molecules and metal nanoparticles, to obtain stronger Raman spectral signal, a new structure based on vertically aligned carbon nanotubes (CNTs) coated by Ag nanoparticles for surface Raman enhancement is presented. The vertically aligned CNTs are synthesized by chemical vapor deposition (CVD). A silver film is first deposited on the vertically aligned CNTs by magnetron sputtering. The samples are then annealed at different temperature to cause the different size silver nanoparticles to coat on the surface and sidewalls of vertically aligned CNTs. The result of scanning electron microscopy(SEM) shows that Ag nanoparticles are attached onto the sidewalls and tips of the vertically aligned CNTs, as the annealing temperature is different , pitch size, morphology and space between the silver nanoparticles is vary. Rhodamine 6G is served as the probe analyte. Raman spectrum measurement indicates that: the higher the concentration of R6G,the stronger the Raman intensity, but R6G concentration increase with the enhanced Raman intensity varies nonlinearly; when annealing temperature is 450 ℃, the average size of silver nanoparticles is about 100 to 120 nm, while annealing temperature is 400 ℃, the average size is about 70 nm, and the Raman intensity of 450 ℃ is superior to the annealing temperature that of 400 ℃ and 350 ℃.
|
Received: 2013-12-03
Accepted: 2014-03-14
|
|
Corresponding Authors:
ZHANG Jie
E-mail: zhangjie@cqu.edu.cn
|
|
[1] Pavan Kumar G V, Ashok Reddy B A, Arif M, et al. Journal of Physical Chemistry B, 2006, 110(33): 16787. [2] Nie S, Emory S R. Science, 1997, 275(5303): 1102. [3] Kneipp K, Wang Y, Kneipp H, et al. Physical Review Letters, 1997, 78(9): 1667. [4] Praveen K S, Niranjan S R, Shekhar B. Journal of Physical Chemistry C, 2008, 112(6): 1729. [5] Wang T, Hu X, Dong S. Journal of Physical Chemistry B, 2006, 110(34): 16930. [6] Abdelsalam M E, Mahajan S, Bartlett P N, et al. Journal of The American Chemical Society, 2007, 129(23): 7399. [7] Jiao Y, Ryckman J D, Ciesielski P N, et al. Nanotechnology, 2011, 22(29): 295302. [8] Hu J W, Zhang Y, Li J F, et al. Chemical Physics Letters, 2005,408: 354. [9] Chen L M, Liu Y N. ACS Applied Materials & Interfaces, 2011, 3(8): 3091. [10] Li X L, Hu H L, Li D H, et al. ACS Applied Materials & Interfaces, 2012, 4(4): 2180. [11] Andrea T, Franklin K, Christian H, et al. Nano Letters, 2003, 3(9): 1229. [12] Sun Y H, Liu K, M J, et al. Nano Letters, 2010, 10(5): 1747. [13] Lee S, Hahm M G, Vajtai R, et al. Advanced Materials, 2012, 24(38): 5261. [14] Chan S, Kwon S, Koo T W, et al. Advanced Materials, 2003, 15(19): 1595. [15] Duan G T, Cai W P, Luo Y Y, et al. Applied Physics Letters, 2006, 89(18): 181918. [16] Yu P A, Terekhov S N, Khodasevich I A. The International Conference on Coherent and Nonlinear Optics Novel Photonics Materials; Optics and Optical Diagnostics of Nanostructures, Minsk, Belarus, 2007, 6728: 672828. [17] Chang H, Ko S, Tsukruk V V. ACS Nano, 2009, 3(1): 181. [18] Li W D, Ding F, Hu J, et al. Optics Express, 2011, 19(5): 3925. [19] Zhang L, Lang X Y, Hirata A, et al. ACS Nano, 2011, 5(6): 4407. [20] Lee M K, Seo J, Cho S J, et al. Materials Letters, 2012, 81(15): 9. [21] Zhang J, Chen Y L, Fan T, et al. Key Engineering Materials, 2013, 562(565): 826. [22] Zhang J, Chen Y L, Zhu Y. Chinese Journal of Lasers,2012, 39(11): 1115001. [23] Fan T, Zhang J, Zhang X L, et al. Chinese Journal of Lasers, 2013, 40(s1): s106001. [24] Steven R E, Nie S. Journal of Physical Chemistry B, 1998, 102(2): 493. |
[1] |
LIANG Shu-yan, LIU Hong-mei*, MU Yun-yun, ZHAI Tian-rui, ZHANG Xin-ping. Gold Nanocluster Assembled Nanoislands for Surface-Enhanced Raman Scattering Application[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 87-92. |
[2] |
LI Yu, HUANG Xiao-ping*, WANG Ying, HOU Yu-meng, CHEN Tao, ZHANG Pei-feng, HUANG Qiu-ying, ZHAO Qing. Fabrication of Gold Nanoparticle Array Substrate by Chemical Replacement and Its Surface Enhanced Raman Scattering Properties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3725-3729. |
[3] |
FU Xiao-qi, ZHANG Guo-lin. Research Progress of Recyclable Surface Enhanced Raman Scattering Substrates[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3435-3440. |
[4] |
ZHANG Xiao-lei, ZHU Yong*, DING Yi-min, ZHANG Jie. TiO2/Graphene/Ag Composite Structure for Surface-Enhanced Raman Scattering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3441-3445. |
[5] |
CHEN Shan-jun1, CHEN Yan1,LI Song1, WU Qing-feng1, YI You-gen2, WEI Jian-jun3. Adsorption Behavior of o-Hydroxybenzoic Acid in Gold Colloids: an Experimental and DFT Study[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3156-3159. |
[6] |
CUI Shao-li1, DU Xiao-qing1*, NIU Lian-bin1,2, ZENG Chao1, BAO Jun1, LI Lu1, CHEN Wei-min1. Surface Enhanced Raman Scattering Spectrum Study on Graphene Oxide and Water Soluble Copper Phthalocyanine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2763-2767. |
[7] |
YU Qing-bo1, HU Kun2*, WANG Cui-ping3, LI Xian-hua2. Ag NPS/g-C3N4 Nanosheets Nanocomposites Used for SERS Nanosensors[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1987-1992. |
[8] |
LUAN Xin-tong1, ZHOU Tie-li1,2, SUN Cheng-bin1, TAO Yan-chun1, ZHAO Bing1, WANG Xu1, RUAN Wei-dong1*. A SERS Study on Self-Assembly Process of 1-Hexanethiol on Ag Nanoparticles: Effects on Adsorption Time and Concentration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1130-1133. |
[9] |
CHEN Wei-wei1, LIU Yu2, SHI Hong1, YU Yun1, LIN Duo1, FENG Shang-yuan3, LIN Jia3, HUANG Hao1*, CHEN Rong3*. Study on Drug Groups in Huo-Xue-Hua-Yu Decoction with Surfaced-Enhanced Raman Scattering Spectroscopic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1134-1138. |
[10] |
CHEN Jing-han, YAO Wen-qing*, ZHU Yong-fa . Photoluminescence of Silicon Nitride-Based ZnO Thin Film Developed with RF Magnetron Sputtering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(02): 391-393. |
[11] |
GAO Fei1, XIONG Yang2 , ZHANG Ming1, ZHU Shao-ling3 . Investigations on NIR-SERS Spectra of Oxyhemoglobin for Lung Cancer Based on NIR-SERS Substrate [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(02): 441-445. |
[12] |
ZHOU Jian-ping1*, LI Xin-yu1, ZHU Feng2, CHEN Xiao-hong2*, XU Zheng3 . Efficient Polymer Solar Cells Using ZnO Electron Transporting Layer with Layered Magentron Sputtered ZnO Film and/or Modified with Functionalized Carbon Nanopartilces[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(02): 517-521. |
[13] |
CHEN Wei-wei1, LIN Jia2, CHEN Rong2, FENG Shang-yuan2, YU Yun1, LIN Duo1, SHI Hong1, HUANG Hao1*. Surfaced-Enhanced Raman Scattering Spectroscopic Study on Sheng-Di-Dang-Gui Decoction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(12): 3963-3967. |
[14] |
LU Bao-qi, XU Yao-xian, SHEN Guang-yao, JI Jiang-hua, WANG Lin-jun. Raman Spectra Study on the Structure and Thermal Stability of Vacuum Annealed Cr-DLC Films Prepared with UBMS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3568-3571. |
[15] |
JIANG Jiao-lai1, ZHANG Jing2, JIA Jian-ping1, WANG Shao-fei1, WU Hao-xi1, YUN Wen1, WANG Xiao-lin2, LIAO Jun-sheng1*. Design and Fabrication of Silver Nanoparticles/Graphen Complex Substrate and Its Application for Detecting Uranium (Ⅵ)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3563-3567. |
|
|
|
|