光谱学与光谱分析 |
|
|
|
|
|
Spectral Properties, Photodynamic Anticancer Activity and the Interaction with Albumin of Silicon Phthalocyanine Axially Modified by Pyrimidine Derivatives |
SHEN Xiao-min, JIANG Xiong-jie, ZHU Yu-jiao, ZHANG Han-hui, HUANG Jian-dong* |
College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108, China |
|
|
Abstract Photophysical photochemical properties, in vitro photodynamic anticancer activity and interaction with albumin of a new axially modified silicon phthalocyanine,i.e. di (2-amino-6-trifluoromethyl-4-pyrimidinyloxy) silicon phthalocyanine (SiPcF), were studied in the present paper. The Q band maximum absorption of SiPcF located at 686 nm with the molar absorption coefficient of 2.3×105 mol-1·L·cm-1. The fluorescence emission of SiPcF peaked at 694 nm with a fluorescence quantum yield of 0.46. Its singlet oxygen quantum yield produced by photosensitization is 0.38, suggesting that SiPcF is an effective 1O2 photosensitizer. There is strong interaction between SiPcF and bovine serum albumin (BSA). The binding constant is 4.33×105 mol·L-1and the number of binding sites is 1. In vitro experiments show that SiPcF had a high photodynamic anticancer activity against human hepatoma cells HepG2 with an IC50 value down to 5×10-7mol·L-1.
|
Received: 2012-12-31
Accepted: 2013-03-15
|
|
Corresponding Authors:
HUANG Jian-dong
E-mail: jdhuang@fzu.edu.cn
|
|
[1] Detty M R, Gibson S L, Wagner S J, et al. J. Med. Chem., 2004, 47(16): 3897. [2] Chen W X, Lu W Y, Yao Y Y, et al. Environ. Sci. Technol., 2007, 41:6240. [3] Nyokong T. Coord. Chem. Rev., 2007, 251: 1707. [4] Jiang X J, Lo P C, Yeung S L, et al. Chem. Commun., 2010, 46: 3188. [5] Milla S L, Rodríguez M E, Cogno I S, et al. Biochim. Biophys. Acta, 2013, 1835(1): 36. [6] Jiang X J, Huang J D, Zhu Y J, et al. Bioorg. Med. Chem. Lett.,2006, 16: 2450. [7] Zhu Y J, Huang J D, Jiang X J, et al. Inorg. Chem. Comm., 2006, 9: 473. [8] Huang J D, Jiang X J, Shen X M, et al. J. Porphyr. Phthalocya., 2009, 13: 1227. [9] Zheng B Y, Lin T, Yang H H, et al. Dyes. Pigments., 2013, 96: 547. [10] HUANG Jian-dong, JIANG Xiong-jie, ZHU Yu-jiao(黄剑东,蒋雄杰,朱尉娇). China Palent(中国专利):CN1861603A,2006. 11. 15. [11] Scalise I, Durantini E N. Bioorg. Med. Chem., 2005, 13: 3037. [12] Maree M D, Kuznetsova N, Nyokong T, et al. J. Photochem. Photobiol. A., 2001, 140: 117. [13] Spiller W, Kliesch H, Worhle D, et al, J. Porphyr. Phthalocya., 1998, 2 : 145. [14] Shinohara H, Tsaryova O, Schnurpfeil G, et al. Photochem. Photobiol. A., 2006, 50: 184. [15] Ke M R, Huang J D, Weng S M, et al. J. Photochem. Photobiol. A, 2009, 23: 201. [16] Tombe S, Chidawanyika W, Antunes E, et al. J. Photochem. Photobiol. A, 2012, 240: 50. [17] Tanaka T, Shiramoto S, Miyashita M, et al. Int. J. Pharmaceut., 277 2004, 277: 39. [18] Liu Y, Xie M X, Jiang M, et al. Spectrochem. Acta A, 2005, 61: 2245. |
[1] |
WANG Jun1, WANG Zhou-li2, CHENG Jing-jing1. Interaction Between Tartrazine and Bovine Serum Albumin Using Multispectral Method and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 904-909. |
[2] |
WANG Xiao-xia1,3*, WU Hao1, NIE Zhi-hua2, MA Li-tong1,3*, CUI Jin-long1, SAI Hua-zheng1, CHENG Jian-guo1. Study on the Interaction Between Fulvic Acid and Bovine Serum Albumin by Multispectral and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2904-2910. |
[3] |
ZHANG Chuan-ying1, PENG Xin1*, RAO Heng-jun2, QI Wei2, SU Rong-xin2, HE Zhi-min2. Spectroscopic Studies on the Interaction Between Salvianolic Acid B and Bovine Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1701-1707. |
[4] |
TUO Xun1, SONG Ji-min1, FU Hao2, LÜ Xiao-lan1*. Study on Interaction Between Hexabromocyclododecane and Bovine Serum Albumin by Spectroscopy and Computer Simulation Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1487-1492. |
[5] |
HU Jing-jing, TONG Chang-lun*. Study on the Interaction Between Carbon Quantum Dots and Human Serum Albumin by Spectroscopic Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1107-1113. |
[6] |
XU Ning1, 2, LIU Mu-hua1, 2, YUAN Hai-chao1, 2, HUANG Shuang-gen1, 2, WANG Xiao1, 2, ZHAO Jin-hui1, 2*, CHEN Jian1, 2, WANG Ting1, 2, HU Wei1, 2, SONG Yi-xin1, 2. Rapid Identification of Sulfamethazine and Sulfadiazine Residues in Chicken Based on SERS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 924-931. |
[7] |
LI Xue1, WANG Li1, LIU Guang-xian1*, TU Zong-cai2. Effect of Urea on Glycosylation of BSA Based on Spectral Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 478-483. |
[8] |
ZHANG Lu1, XU Liang1, TU Zong-cai1, 2*, ZHOU Qi-ming1, ZHOU Wen-na1. Mechanism of Isoquercitrin Inhibiting Advanced Glycation Products Formation Based on Fluorescence Spectroscopy Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3755-3760. |
[9] |
LI Xing-xing, ZHANG Xiang, HUANG Xue-song*. Interaction Between Three Sulfur-Containing Amino Acids in Garlic and Bovine Serum Albumin Determined by Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3483-3488. |
[10] |
ZHANG Jing1, GAO Xuan1, 2, JIN Liang1, WANG Hong-hui1, ZHOU Xi-ping1. Comparisons and Applications of Functional Equations for the Calculation of the Protein-Ligand Binding Constant Based on Fluorescence Spectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3494-3498. |
[11] |
HUANG Fang1, LIU Ming-xue1, 2*, XIONG Jie1, CHEN Lü-qi1, GAO Zhu-xin1, CHEN Hui-ming1, WANG Dan-ni1. Effect of Far-Infrared Ceramic Powder on the Interaction Between Essential Oil and BSA[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2358-2365. |
[12] |
GUO Qing-ying1, LIU Min1,2*, ZHAO Yan-na2, WU Yu-shu2, SUN Bin2, LIU Jie1, HAN Jun2. Spectroscopic and Cytotoxicity Study on the Influence of (-)-Epigallocatechin-3-Gallate on the Interaction of Daunorubicin with Human Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1821-1827. |
[13] |
WANG Xiao-xia1*, NIE Zhi-hua2, MA Li-tong1, CUI Jin-long1, SAI Hua-zheng1,ZHAO Wen-yuan1. Study on the Interaction Between Minocycline and Bovine Serum Albumin by Multi Spectral Method and Molecular Docking Simulation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1503-1508. |
[14] |
HUANG Chao-bo3, XU Han3, YANG Ming-guan3, LI Zhen-jing1, 3, YANG Hua1, 3, WANG Chang-lu1, 2, 3, ZHOU Qing-li1, 2, 3*. The Interaction between Rubropunctamine and Bovine Serum Albumin Using Spectrometry and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 3102-3108. |
[15] |
HAN Zhong-bao1, WU Yu-hang1, MI Yuan-yuan1, LIU Li-yan1,2, SU Gui-tian1, YU Zhan1,2*. Isomeric Discrimination of Oleanolic and Ursolic Acids by Human Serum Albumin: a Joint Study of Fluorescence Spectroscopy and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(07): 2190-2195. |
|
|
|
|