光谱学与光谱分析 |
|
|
|
|
|
Measurements of Stable Isotopes in Atmospheric CO2 and H2O by Open-Path Fourier Transform Infrared Spectrometry |
WANG Wei1, 2,LIU Wen-qing2,ZHANG Tian-shu2 |
1. School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China 2. Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract The development of spectroscopic techniques has offered continuous measurement of stable isotopes in the ambient air. The method of measuring environmental stable isotopes based on Fourier transform infrared spectrometry (FTIR) is described. In order to verify the feasibility of the method for continuous measurement of the stable isotopes, an open-path FTIR system was used to measure stable isotopes of CO2 and H2O in ambient air directly in a seven-day field experiment, including 12CO2, 3CO2, H216O and HD16O. Also, the time course of carbon isotopic ratio δ13C and deuterium isotope composition δD was calculated. The measurement precision is about 1.08‰ for δ13C and 1.32‰ for δD. The measured stable isotopes of CO2 and H2O were analyzed on different time scales by Keeling plot methods, and the deuterium isotopic ratios of evapotranspiration were determined. The results of the field experiment demonstrate the potential of the open-path FTIR system for continuous measurement of stable isotopes in the air.
|
Received: 2012-12-13
Accepted: 2013-03-04
|
|
Corresponding Authors:
WANG Wei
E-mail: wwang@aiofm.ac.cn
|
|
[1] Wada R, Pearce J K, Nakayama T, et al. Atmospheric Environment, 2011, 45(5): 1168. [2] Twining J, Stone D, Tadros C, et al. Global and Planetary Change, 2006, 51(1-2): 59. [3] Griffith D W T, Jamie I, Esler M, et al. Isotopes in Environmental and Health Studies, 2006, 42(1): 9. [4] Cappa C D, Hendricks M B, DePaolo D J, et al. Journal of Geophysical Research, 2003, 108 (D16): 4525. [5] LIU Wei, WEI Nan-nan, WANG Guang-hua, et al(刘 卫, 位楠楠, 王广华, 等). Environmental Science(环境科学), 2012, 33(4): 1041. [6] Jager F, Wagner G, Meijer H A J, et al. Isotopes in Environmental and Health Studies, 2005, 41(4): 373. [7] Wen X F, Sun X M, Zhang S C, et al. Journal of Hydrology, 2008, 349(3-4): 489. [8] Schaeffer S M, Miller J B, Vaughn B H, et al. Atmospheric Chemistry and Physics, 2008, 8(17): 5263. [9] YUAN Guo-fu, ZHANG Na, SUN Xiao-min, et al(袁国富, 张 娜, 孙晓敏, 等). Chinese Journal of Plant Ecology(植物生态学报), 2010, 34(2): 170. [10] McManus J B, Nelson D D, Zahniser M S. Isotopes in Environmental and Health Studies, 2010, 46(1): 49. [11] Tuzson B, Zeeman M J, Zahniser M S, et al. Infrared Physics and Technology, 2008, 51(3): 198. [12] Gupta P, Noone D, Galewsky J, et al. Rapid Communications in Mass Spectrometry, 2009, 23(16): 2534. [13] Kerstel E R T, Iannone R Q, Chenevier M, et al. Applied Physics B-Lasers and Optics, 2006, 85(2-3): 397. [14] Esler M B, Griffith D W T, Wilson S R, et al. Analytical Chemistry, 2000, 72(1): 216. [15] Griffith D W T. Applied Spectroscopy, 1996, 50(1): 59. [16] Esler M B, Griffith D W T, Wilson S R, et al. Analytical Chemistry, 2000, 72(1): 206. [17] Schneider M, Toon G C, Blavier J F, et al. Atmospheric Measurement Techniques, 2010, 3(6): 1599. [18] Keeling C D. Geochimica et Cosmochimica Acta, 1958, 13(4): 322. [19] Keeling C D. Geochimica et Cosmochimica Acta, 1961, 24(3-4): 277. [20] Pataki D E, Ehleringer J R, Flanagan L B, et al. Global Biogeochemical Cycles, 2003, 17(1): 1022. [21] Yakir D, Sternberg L D L. Oecologia, 2000, 123(3): 297. [22] Bowling D R, Sargent S D, Tanner B D, et al. Agricultural and Forest Meteorology, 2003, 118(1-2): 1. [23] Griffis T J, Zhang J, Baker J M, et al. Boundary-Layer Meteorology, 2007, 123(2): 295. [24] Roden J S, Ehleringer J R. Plant Physiology, 1999, 120(4): 1165. |
[1] |
LI Shu-jie1, LIU Jie1, DENG Zi-ang1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Study of Germinated Rice Seeds by FTIR Spectroscopy Combined With Curve Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1832-1840. |
[2] |
ZHA Ling-ling1, 2, 3, WANG Wei2*, XIE Yu1, SHAN Chang-gong2, ZENG Xiang-yu2, SUN You-wen2, YIN Hao2, HU Qi-hou2. Observation of Variations of Ambient CO2 Using Portable FTIR
Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1036-1043. |
[3] |
AIBIBAIHAN Maturzi1, XU Rong2, LI Xiao-jin1, 3*, FAN Cong-zhao3, QI Zhi-yong3, ZHU Jun3, WANG Guo-ping3, ZHAO Ya-qin3. Study on Infrared Spectrum Fingerprint of Apocynumvenetum L. in Xinjiang Based on Double Index Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 757-763. |
[4] |
LI Ying-ying1, ZHANG Zhi-qing1*, WU Xiao-hong2, Andy Hsitien Shen1*. Photoluminescence in Indonesian Fossil Resins[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 814-820. |
[5] |
FU Juan, MO Jia-mei, YU Yi-song, ZHANG Qing-zong, CHEN Xiao-li, CHEN Pei-li, ZHANG Shao-hong, SU Qiu-cheng*. Experimental Study on the Structure Characteristics of CO2 in Gas Hydrate by Solid-State Nuclear Magnetic Resonance and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 464-469. |
[6] |
AN Zhen-hua1, ZHAO Dong-yan2, YE Yan1, YANG Rui1*, WANG Yu-bo2, SHAO Jin2, ZHANG Peng2, CHEN Yan-ning2, 3, ZHOU Min2, WANG Wen-he2, WANG Zheng2, HUANG Hai-chao2, WANG Li-cheng3, ZHONG Ming-chen3, ZHEN Yan2, WAN Yong2. A Novel Aging Evaluation Method of Nylon[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 43-48. |
[7] |
WANG Xin-qiang1, 3, HU Feng1, 3, XIONG Wei2, YE Song1, 3, LI Shu1, 3, GAN Yong-ying1, 3, YIN Shan1, 3, WANG Fang-yuan1, 3*. Research on Raman Signal Processing Method Based on Spatial Heterodyne[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 93-98. |
[8] |
JIAO Qing-liang1, LIU Ming1*, YU Kun2, LIU Zi-long2, 3, KONG Ling-qin1, HUI Mei1, DONG Li-quan1, ZHAO Yue-jin1. Spectral Pre-Processing Based on Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 292-297. |
[9] |
HE Xiong-fei1, 2, HUANG Wei3, TANG Gang3, ZHANG Hao3*. Mechanism Investigation of Cement-Based Permeable Crystalline Waterproof Material Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3909-3914. |
[10] |
JIA Ting-gui1,2, LI Xun1*, QU Guo-na1, LI Wei3, YAO Hai-fei3,4,5, LIU Ting-fang6. FTIR Characterization of Chemical Structures Characteristics of Coal Samples With Different Metamorphic Degrees[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3363-3369. |
[11] |
ZHU Zhi-gao1, LIU Ya1*, YANG Jie1, HU Guo-qing2, 3. A Review of Single-Cavity Dual-Comb Laser and Its Application in Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3321-3330. |
[12] |
LI Qiong, MA Shuai-shuai, PANG Shu-feng, ZHANG Yun-hong*. Measurement on Mass Growth Factors of (NH4)2SO4, NH4NO3, and Mixed (NH4)2SO4/NH4NO3 Aerosols Under Linear RH Changing Mode[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3444-3450. |
[13] |
WU Jing-xuan, LI Jie*, LIN Jia-wei, YI Shi-wen, LI Min, SU Wen-rou. Influence Mechanism of Microwave on Barite Flotation Based on Infrared Fitting Spectrum Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3083-3091. |
[14] |
ZHANG Ying-qiang1, ZHANG Shui-qin2, WANG Li-yan1*, YUAN Liang2, LI Yan-ting2, XIONG Qi-zhong3, LIN Zhi-an2, ZHAO Bing-qiang2*. Multispectral Structural Characterization of Low-Molecular-Weight Organic Acids Modified Urea[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3129-3136. |
[15] |
ZHANG Zhi-qi1, ZHAO Tong1, LIU Ling1, LI Yan1,2*. Spectral Characteristics of Madagascar Agates[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3227-3232. |
|
|
|
|