光谱学与光谱分析 |
|
|
|
|
|
The FTIR Spectral Characteristics and Comparison Study of Astragalus Menbranceus Soil |
LIU Bi-wang1, ZHAO Hui-hui2*, ZHAO Ping3, WANG Wei2, XUE Hui-qing1, WANG Yong-hui1, ZHOU Ran1, LIU Yang-qing1 |
1. Shanxi College of Traditional Chinese Medicine, Taiyuan 030024, China 2. Beijing University of Chinese Medicine, Beijing 100029, China 3. Wuxi AppTec (Tianjin) Co. Ltd., Tianjin 300457, China |
|
|
Abstract To study the genuine soil of Astragalus menbranceus grows, FTIR spectrometry was used, which is accurate, simple and efficient and has high resolution. The genuine soils include six areas in Hunyuan of Shanxi province, three areas in Yingxian of Shanxi province, Fansi of Shanxi province, and Guyang of Inner Mongolia. Different growth years of two to five for each area were also studied. The results show that there are significant differences between Astragalus menbranceus soil FTIR spectrometry and general soil’s, between soil of Astragalus menbranceus growth and radix codonopsitis growth, between different soil of Astragalus menbranceus growth, providing useful information for the area chose of Chinese herb cultural and transplantation.
|
Received: 2012-03-08
Accepted: 2012-05-20
|
|
Corresponding Authors:
ZHAO Hui-hui
E-mail: hh686@126.com
|
|
[1] LI Gui-lan, ZHAO Hui-hui, ZHAO Ping, et al(李桂兰,赵慧辉,赵 平,等). China Journal of Traditional Chinese Medicine and Pharmacy(中华中医药杂志), 2011, 26(1): 84. [2] LIU Yang-qing, ZHAO Guo-feng, HAN Xue, et al(刘养清,赵国峰,韩 雪). China Pharmacy(中国药房),2009, 20(24): 1879. [3] Pharmacopoeia Committee of the Ministry of Public Health of the People’s Republic of China(中华人民共和国卫生部药典委员会). Pharmacopoeia of the Ministry of Public Health of the People’s Republic of China,Ⅰ(中华人民共和国卫生部药典, 第1部). Beijing: Chemical Industry Press(北京: 化学工业出版社), 2005. 28.
|
[1] |
WEI Si-ye1, 2, FAN Xing-cheng3, MAO Han1, 2, CAO Tao4, 5, CHENG Ao3, FAN Xing-jun3*, XIE Yue3. Abundance and Spectral Characteristics of Molecular Weight Separated Dissolved Organic Matter Released From Biochar at Different Pyrolysis Temperatures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1809-1815. |
[2] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[3] |
LUO Jie1, 2, YUE Su-wei1, 2*, GUO Hong-ying1, LIU Jia-jun3. Spectroscopic Characteristics and Coloring Mechanism of Smithsonite
Jade[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1886-1890. |
[4] |
LI Quan-lun1, CHEN Zheng-guang1*, SUN Xian-da2. Rapid Detection of Total Organic Carbon in Oil Shale Based on Near
Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1691-1697. |
[5] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[6] |
PENG Ren-miao1, 2, XU Peng-peng2, ZHAO Yi-mo2, BAO Li-jun1, LI Cheng2*. Identification of Two-Dimensional Material Nanosheets Based on Deep Neural Network and Hyperspectral Microscopy Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1965-1973. |
[7] |
JI Rong-hua1, 2, ZHAO Ying-ying2, LI Min-zan2, ZHENG Li-hua2*. Research on Prediction Model of Soil Nitrogen Content Based on
Encoder-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1372-1377. |
[8] |
WANG Ling-ling1, 2, 3, WANG Bo1, 2, 3, XIONG Feng1, 2, 3, YANG Lu-cun1, 2, LI Jing-jing4, XIAO Yuan-ming1, 2, 3, ZHOU Guo-ying1, 2*. A Comparative Study of Inorganic Elements in Cultivativing Astragalus Membranaceus From Different Habitats[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1407-1412. |
[9] |
HOU Bing-ru1, LIU Peng-hui1, ZHANG Yang1, HU Yao-hua1, 2, 3*. Prediction of the Degree of Late Blight Disease Based on Optical Fiber Spectral Information of Potato Leaves[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1426-1432. |
[10] |
ZHANG Yu-yang, CHEN Mei-hua*, YE Shuang, ZHENG Jin-yu. Research of Geographical Origin of Sapphire Based on Three-Dimensional Fluorescence Spectroscopy: A Case Study in Sri Lanka and Laos Sapphires[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1508-1513. |
[11] |
ZHANG Zhao1, 2, 3, 4, YAO Zhi-feng1, 3, 4, WANG Peng1, 3, 4, SU Bao-feng1, 3, 4, LIU Bin3, 4, 5, SONG Huai-bo1, 3, 4, HE Dong-jian1, 3, 4*, XU Yan5, 6, 7, HU Jing-bo2. Early Detection of Plasmopara Viticola Infection in Grapevine Leaves Using Chlorophyll Fluorescence Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1028-1035. |
[12] |
HE Ya-xiong1, 2, ZHOU Wen-qi1, 2, ZHUANG Bin1, 2, ZHANG Yong-sheng1, 2, KE Chuan3, XU Tao1, 2*, ZHAO Yong1, 2, 3. Study on Time-Resolved Characteristics of Laser-Induced Argon Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1049-1057. |
[13] |
DONG Rui, TANG Zhuang-sheng, HUA Rui, CAI Xin-cheng, BAO Dar-han, CHU Bin, HAO Yuan-yuan, HUA Li-min*. Research on Classification Method of Main Poisonous Plants in Alpine Meadow Based on Spectral Characteristic Variables[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1076-1082. |
[14] |
CHEN Chu-han1, ZHONG Yang-sheng2, WANG Xian-yan3, ZHAO Yi-kun1, DAI Fen1*. Feature Selection Algorithm for Identification of Male and Female
Cocoons Based on SVM Bootstrapping Re-Weighted Sampling[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1173-1178. |
[15] |
YANG Yu-qing1, CAI Jiang-hui1, 2*, YANG Hai-feng1*, ZHAO Xu-jun1, YIN Xiao-na1. LAMOST Unknown Spectral Analysis Based on Influence Space and Data Field[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1186-1191. |
|
|
|
|