光谱学与光谱分析 |
|
|
|
|
|
Research Progress in Using Functional Near-Infrared Spectroscopy for Monitoring Depth of Anesthesia |
HONG Wen-xue1*, ZHANG Zhong-peng1, SONG Jia-lin1, LI Shao-xiong1, LUAN Jing-min1, CHEN Ning2, TAN Jian-qiang3 |
1. Department of Biomedical Engineering, Yanshan University, Qinhuangdao 066004, China 2. The Hospital of Logistics School of The Chinese People’s Armed Police Force, Tianjin 300162, China 3. Binhai New Area Han’gu Hospital, Tianjin 300480, China |
|
|
Abstract Intra-operation monitoring depth of anesthesia is an important method to insure the quality and safety of clinical anesthesia. As a noninvasive brain function monitoring technology, functional near-infrared spectroscopy can provide objective and reliable brain activity monitoring and imaging in real time. The characteristic of this technique is highly suitable for interrelated research on depth of anesthesia monitoring. The present paper briefly introduced the fundamental and instruments of functional near-infrared spectroscopy, reviewed the current situation about the application of functional near-infrared spectroscopy in research on depth of anesthesia monitoring, pointed out the possible way of using functional near-infrared spectroscopy in depth of anesthesia monitoring research, and expounded the unsolved problems and future prospects.
|
Received: 2012-01-10
Accepted: 2012-04-15
|
|
Corresponding Authors:
HONG Wen-xue
E-mail: hongwx@ysu.edu.cn
|
|
[1] Craig S A K, Kitson R. Clinical Anesthesia, 2010, 11(11): 464. [2] ASA House of Delegates. Anesthesiology, 2006, 104: 847. [3] Bruhn J, Myles P S, Sneyd R, et al. Br. J. Anaesth., 2006, 97: 85. [4] Liao Wenwei, Wang Jenjui, Wu Gonghe, et al. Journal of the Chinese Medical Association, 2011, 74: 28. [5] HONG Wen-xue, ZHANG Zhong-peng, SONG Jia-lin, et al(洪文学, 张仲鹏, 宋佳霖, 等). Chinese Journal of Biomedical Engineering(中国生物医学工程学报), 2011, 30(5): 127. [6] Larsson A, Uusijrvi J, Eksborg S, et al. Eur. J. Appl. Physiol., 2010, 109: 757. [7] Mutoh T, Ishikawa T, Suzuki A. Neurocrit Care, 2010, 13: 331. [8] Kwan H C, Cheng A, Liu R, et al. BMC Physiology, 2004, 4: 7. [9] Fantini S, Sassaroli A. Annals of Biomedical Engineering, Online First<sup>TM</sup>, 5 Oct. 2011. [10] Quaresima V, Ferrari M. Eur. J. Appl. Physiol., 2002, 88: 294. [11] Martin D S, Levett D Z H, Mythen M, et al. Critical Care, 2009, 13(Suppl. 5): S7. [12] Hornung R, Spichtig S, Baos A, et al. Lasers Med. Sci., 2011, 26: 205. [13] Boas D A, Dale A M, Franceschini M A. NeuroImage, 2004, 23(S): 275. [14] Kondepati V R, Heise H M, Backhaus J. Anal. Bioanal. Chem., 2008, 390: 125. [15] Shimizu Y, Temma T, Hara I, et al. J. Fluoresc., Online First<sup>TM</sup>, Nov. 2011. [16] Leff D R, Orihuela-Espina F, Elwell C E, et al. NeuroImage, 2011, 54: 2922. [17] Nagai M, Endo N, Kumada T. M. J. Smith, G. Salvendy (Eds.): Human Interface, Part I, HCII 2007, LNCS 4557, Springer-Verlag Berlin Heidelberg, 2007, 4557: 884. [18] Al-Rawi P G. Acta Neurochir, 2005, 95(Suppl.): 453. [19] Francis S V, Ravindran G, Visvanathan K, et al. Journal of Clinical Neuroscience, 2005, 12(3): 291. [20] Richter M M, Zierhut K C, Dresler T, et al. J. Neural. Transm., 2009, 116: 267. [21] Son Il-Y, Yazici B. Advances in Sensing with Security Applications, Jim Byrnes and Gerald Ostheimer (Eds.), Springer, 2006. 341. [22] Steiner L A, Pfister D, Strebel S P, et al. Neurocrit Care, 2009, 10: 122. [23] Khoa T Q D, Nakagawa M. Nonlinear Biomedical Physics, 2008, 2: 3. [24] Holper L, Wolf M. Journal of Neuro Engineering and Rehabilitation, 2011, 8: 34. [25] Strangman G, Boas D A, Sutton P J. Biol. Psychiatry, 2002, 52: 679. [26] Chance B, Cope M, Gratton E, et al. Rev. Sci. Instrum., 1998, 69(10): 3457. [27] Chemseddine M, Jean-Pierre L’H, Nasser H K, et al. Lasers Med. Sci., 2010, 25: 431. [28] Soul J S, du Plessis A J. Seminars in Pediatric Neurology, 1999, 6(2): 101. [29] Gsell W, De Sadeleer C, Marchalant Y, et al. Journal of Chemical Neuroanatomy, 2000, 20: 215. [30] Rostrup E, Knudsen G M, Law I, et al. NeuroImage, 2005, 24: 1. [31] Culver J P, Siegel A M, Franceschini M A, et al. NeuroImage, 2005, 27: 947. [32] Hashimoto T, Minagawa-Kawai Y, Kojima S. Brain Research, 2006, 1077: 116. [33] Kennedy D O, Haskell C F. Biological Psychology, 2011, 86: 298. [34] Hielscher A H, Bluestone A Y, Abdoulaev G S, et al. Disease Markers, 2002, 18: 313. [35] Gibson A, Dehghani H. Phil. Trans. R. Soc. A, 2009, 367: 3055. [36] Niederhauser B D, Rosenbaum B P, Gore J C, et al. Neurocrit Care, 2008, 9: 31. [37] Tsujimoto S, Yamamoto T, Kawaguchi H, et al. Cereb. Cortex, 2004, 14: 703. [38] Nsi T, Kotilahti K, Noponen T, et al. Exp. Brain. Res., 2010, 202: 561. [39] Gentili R J. Foundations of Augmented Cognition. Directing the Future of Adaptive Systems FAC 2011, HCII 2011, LNAI 6780, Springer-Verlag Berlin Heidelberg,2011. 159. [40] Huppert T J, Hoge R D, Diamond S G, et al. Neuroimage, 2006, 29: 368. [41] Chen Y, Tailor D R, Intes X, et al. Phys. Med. Biol.,2003, 48: 417. [42] Jinnouchi Y, Kawahito S, Kitahata H, et al. J. Anesth., 2004, 18: 220. [43] Naguib A N, Winch P, Ro P S, et al. Pediatr Cardiol, 2011, 32: 234. [44] Borsook D, Becerra L. Neuroscience and Biobehavioral Reviews, 2011, 35: 1125. [45] Ishizawa Y. J. Anesth., 2007, 21: 187. [46] Chen L M, Friedman R M, Roe A W. J. Neurosci, 2005, 25: 7648. [47] Martin C, Berwick J, Johnston D, et al. J. Neurosci Methods, 2002, 120: 25. [48] Crespi F. Curr. Vasc. Pharmacol.,2007, 5: 305. [49] Izzetoglu K, Bunce S, Onaral B, et al. J. of Human-Comp. Int., 2004, 17(2): 211. [50] Izzetoglu K, Ayaz H, Merzagora A, et al. Journal of Innovative Optical Health Sciences, 2011, 4(3): 239. [51] Hirshfield L M, Chauncey K, Gulotta R, et al. Schmorrow D. D. et al. (Eds. ): Augmented Cognition, HCII 2009, LNAI 5638, Springer-Verlag Berlin Heidelberg,2009. 239. [52] Takeuchi M, Hori E, Takamoto K, et al. Brain Topogr, 2009, 22: 197. [53] Jing Kunpeng, Zhang Zhongpeng, Li Xin, et al. IEEE International Conference on IMCCC 1st, 2011, Sep. 108. |
[1] |
HUANG Bin, DU Gong-zhi, HOU Hua-yi*, HUANG Wen-juan, CHEN Xiang-bai*. Raman Spectroscopy Study of Reduced Nicotinamide Adenine Dinucleotide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1679-1683. |
[2] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[3] |
YANG Jin-chuan1, 2, AN Jing-long1, 2, LI Cong3, ZHU Wen-chao3*, HUANG Bang-dou4*, ZHANG Cheng4, 5, SHAO Tao4, 5. Study on Detecting Method of Toxic Agent Containing Phosphorus
(Simulation Agent) by Optical Emission Spectroscopy of
Atmospheric Pressure Low-Temperature Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1728-1734. |
[4] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[5] |
ZHANG Xing-long1, LIU Yu-zhu1, 2*, SUN Zhong-mou1, ZHANG Qi-hang1, CHEN Yu1, MAYALIYA·Abulimiti3*. Online Monitoring of Pesticides Based on Laser Induced Breakdown
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1711-1715. |
[6] |
LI Quan-lun1, CHEN Zheng-guang1*, SUN Xian-da2. Rapid Detection of Total Organic Carbon in Oil Shale Based on Near
Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1691-1697. |
[7] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[8] |
ZHU Xiang1, 2*, YUAN Chao-sheng1, CHENG Xue-rui1, LI Tao1, ZHOU Song1, ZHANG Xin1, DONG Xing-bang1, LIANG Yong-fu2, WANG Zheng2. Study on Performances of Transmitting Pressure and Measuring Pressure of [C4mim][BF4] by Using Spectroscopic Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1674-1678. |
[9] |
WANG Ming-xuan, WANG Qiao-yun*, PIAN Fei-fei, SHAN Peng, LI Zhi-gang, MA Zhen-he. Quantitative Analysis of Diabetic Blood Raman Spectroscopy Based on XGBoost[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1721-1727. |
[10] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[11] |
JI Jiang-tao1, 2, LI Peng-ge1, JIN Xin1, 2*, MA Hao1, 2, LI Ming-yong1. Study on Quantitative Detection of Tomato Seedling Robustness
in Spring Seedling Transplanting Period Based on VIS-NIR
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1741-1748. |
[12] |
ZHU Meng-yuan1, 2, LÜ Bin1, 2*, GUO Ying2. Comparison of Haematite and Goethite Contents in Aeolian Deposits in Different Climate Zones Based on Diffuse Reflectance Spectroscopy and Chromaticity Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1684-1690. |
[13] |
JIANG Rong-chang1, 2, GU Ming-sheng2, ZHAO Qing-he1, LI Xin-ran1, SHEN Jing-xin1, 3, SU Zhong-bin1*. Identification of Pesticide Residue Types in Chinese Cabbage Based on Hyperspectral and Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1385-1392. |
[14] |
HU Bin1, 2, FU Hao1, WANG Wen-bin1, ZHANG Bing1, 2, TANG Fan3*, MA Shan-wei1, 2, LU Qiang1, 2*. Research on Deep Sorting Approach Based on Infrared Spectroscopy for High-Value Utilization of Municipal Solid Waste[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1353-1360. |
[15] |
YAN Ling-tong, LI Li, SUN He-yang, XU Qing, FENG Song-lin*. Spectrometric Investigation of Structure Hydroxyl in Traditional Ceramics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1361-1365. |
|
|
|
|