光谱学与光谱分析 |
|
|
|
|
|
A Fractal Denoising Method for Astronomical Spectral Signal |
HAN Jin-shu1,2,3, LUO A-li1, ZHAO Yong-heng1 |
1. Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China 3. Department of Computer Science and Technology, Dezhou University, Dezhou 253020, China |
|
|
Abstract To restore the continuum and the spectral lines from a noisy astronomical spectrum, then to measure the equivalent widths of the spectral lines, the fractal denoising method was firstly used in astronomical spectra in the present paper. The method is based on the distinguishing features, that is the local self-similarities exist in an astronomical spectrum, while not in a random white noise signal. The experimental results show that the fractal denoising method is efficient in parameter measurements, such as equivalent widths for spectral lines, redshift of galaxies, and so on. In addition, the method can achieve data compression. The fractal method can be used in the mass spectra of LAMOST.
|
Received: 2011-03-03
Accepted: 2011-06-26
|
|
Corresponding Authors:
HAN Jin-shu
E-mail: jinshu_han@yahoo.com.cn
|
|
[1] Adelman-McCarthy J K, Agüeros M A, Allam S S, et al. Astrophysical Journal Supplement Series,2008, 175: 297. [2] Mucciarelli A. Astronomy & Astrophysics,2011, 528: 44. [3] Wende S, Reiners A, Ludwig H G. Astronomy and Astrophysics,2009, 508: 1429. [4] Connolly A J, Szalay A S. Astronomical Journal,1999, 117: 2052. [5] Pizurica A, Philips W, Lemahieu I, et al. IEEE Trans. on IP, 2002, 11(5): 545. [6] Balster E J, Zheng Y F, Ewing R L. IEEE Trans. on IP, 2005, 14(12): 2024. [7] Baraniuk R G. IEEE Signal Processing Magazine,2007, 24(4): 118. [8] Liu Teng, Wang Junxian. The Astrophysical Journal,2010, 725: 2381. [9] Lara-López M A, Cepa J, Castaeda H, et al. Publications of the Astronomical Society of the Pacific,2010, 122: 1495. [10] Abazajian K N, Adelman-McCarthy J K, Agüeros M A, et al. The Astrophysical Journal Supplement,2009, 182: 154. [11] Trager S C, Worthey Guy, Faber S M, et al. Astrophysical Journal Supplement Series, 1998, 116: 1. [12] Barnsley M F, Demko S. Proc. R. Soc. London, 1985, A399: 243. [13] Jacquin A. IEEE Trans. Image Processing,1992, 1: 18. [14] Ghazel M, Freeman G H, Vrscay E R. IEEE Transaction on Image Processing, 2003, 12: 1560. |
[1] |
REN Xue-zhi1, HE Peng1, 2*, LONG Zou-rong1, GUO Xiao-dong1, AN Kang2, LÜ Xiao-jie1, WEI Biao1, 2, FENG Peng1, 2*. Research on Spectral CT Image Denoising Via Fully Convolution Pyramid Residual Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2950-2955. |
[2] |
XIE De-hong1, LI Jun-feng2, LIU Di3, WAN Xiao-xia4, YE Yi1. An Improved Hodrick-Prescott Decomposition Based Near-Infrared Adaptive Denoising Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1650-1655. |
[3] |
LI Hang-fei, TU Liang-ping*, HU Yu-han, LIU Hao, ZHAO Jian. Automatic Measurement of Stellar Atmospheric Physical Parameters Based on Kernel Ridge Regression Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(04): 1297-1303. |
[4] |
MA Hong-yu, LI Jiu-sheng*. Terahertz Bandpass Filter Based on Koch Curve Fractal Structure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 733-737. |
[5] |
YAO Zhi-xiang1, 3, 4, SU Hui1, 3*, HAN Ying2, XU Ji-ge2, HUANG Xiao-cheng1, 3, XIN Xin2. Fluorescence Fading Effect and Raman Spectrum Baseline Interference Cancellation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(07): 2034-2039. |
[6] |
LIN Xiao-mei1, GUO Ming1, WANG Xing-sheng2, GAO Xun2*. Determination of Na Element in NaCl Solution by Laser Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(06): 1953-1957. |
[7] |
TAO Wei-liang1, LIU Yan2, WANG Xian-pei1, WU Qiong-shui1. Implementation of Overlapping Peak Separation Algorithm for Absorption Spectra by Fractal Dimension Analysis in Time-Frequency Domain[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3664-3669. |
[8] |
GU Song1, 2, CHEN Guo-qing1, 2*, ZHU Zhuo-wei1, 2, WU Ya-min1, 2, ZHU Chun1, 2, ZHAO Jin-chen1, 2, DU Jia-meng1, 2, XI Liu-hua1, 2. Detection of Carmine in Solution by Fluorescence Correlation Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3776-3780. |
[9] |
HUANG Wei, GAO Tai-chang*, LIU Lei, LI Shu-lei . Research on the Noise Reduction with Hyper-Resolution Infrared Spectrum Based on Improved PCV Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3625-3629. |
[10] |
WANG Xiao-qiao1,2,4, WANG Fang1,3, LIAO Gui-ping1,3*, GUAN Chun-yun1,2 . Multifractal Analysis of Rapeseed Spectrum for Chlorophyll Diagnosis Modeling [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3657-3663. |
[11] |
CUI Hai-bin1, YANG Ke1, 2, ZHANG Long1, WU Xiao-song1, LIU Yong1, WANG An1, LI Hui3, JI Min1* . Tunable Diode Laser Absorption Spectroscopy (TDLAS) Detection Signal Denoising Based on Gabor Transform [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(09): 2997-3002. |
[12] |
LUO Xiao-long1, 2, TONG Zhi-jun3*, ZHAO Yun-sheng1, ZHANG Ji-quan3 . An Identification Study on Field-Derived Spectra of Grassland Combustibles and Soil Based on Fractal Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(08): 2553-2557. |
[13] |
TANG Chao1, 2, CHEN Jian-ping1, 2*, CUI Jing1, WEN Bo-tao1 . Lithology Feature Extraction of CASI Hyperspectral Data Based on Fractal Signal Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(05): 1388-1393. |
[14] |
ZHAO Xiao-yu1,2, FANG Yi-ming1, WANG Zhi-gang3, ZHAI Zhe2 . EEMD De-Noising Adaptively in Raman Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(12): 3255-3258. |
[15] |
LOU Sheng-jin, ZHANG Ji-fu*, YANG Hai-feng . An Abnormal Characteristic Line Mining Method of Celestial Spectrum Based on Attribute Weight and wk-Distance [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(08): 2255-2258. |
|
|
|
|