光谱学与光谱分析 |
|
|
|
|
|
Crystal Structure and Photoluminescence Studies of ZnO Nanocrystals Doped with Eu3+ Ions |
HUANG Fang-ying, LUO Li*, DAI Qiang-qin |
School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China |
|
|
Abstract The ZnO∶Eu3+ crystal was prepared via coprecipitation with the starting materials Zn(OOCCH3)2·2H2O, Eu2O3 and NaOH. The X-ray diffraction patterns show that the samples are hexagonal wurtzite structure, No diffraction peaks from europium oxides are detectable. Comparing the ZnO and ZnO∶Eu3+ Raman spectra, the new local vibrational modes were observed in ZnO∶Eu3+. These phenomena show that Eu3+ ions have entered the lattice by doping. The SEM analysis exhibits that ZnO nanoparticles prepared by coprecipitation become smaller with Eu3+ doping. The excitation and emission spectra of ZnO∶Eu3+ sample present a efficient energy transfer process between ZnO and Eu3+ ions.
|
Received: 2011-02-28
Accepted: 2011-07-10
|
|
Corresponding Authors:
LUO Li
E-mail: luoli@gdut.edu.cn
|
|
[1] Marathe S K, Koinkar P M, Ashtaputre S S, et al. Nanotechnology, 2006, 17: 1932. [2] Bhargava R N. Journal of Luminescence. 1997, (72-74): 46. [3] Krishna Kanta Haldar, Amitava Patra. Applied Physics Letters, 2009, 95: 063103. [4] Pan C J, Chen C W, Chen J Y, et al. Applied Surface Science, 2009, 256: 187. [5] Trinh Thi Hang, Trinh Xuan Anh, Pham Thanh Huy. Journal of Physics: Conference Series, 2009, 187: 012022. [6] Blanca-Romero A, Flores-Riveros A, Rivas-Silva J F. Journal of Nano Research, 2010, 9:25. [7] Van Dijken A, Meulemkamp E A, Vanmaekelbergh D, et al. Journal of Luminescence, 2000, 87-89: 454. [8] Du Y P, Zhang Y W, Sun L D, et al. J. Phys. Chem. C, 2008, 112: 12234. [9] Calleja J M, Cardona M. Phys. Rev. B, 1977, 16: 3753. [10] Kaschner A, Siegle H, Kaczmarczyk G, et al. Appl. Phys. Lett., 1999, 74: 3281. [11] Wang X B, Song C, Geng K W, et al. J. Phys. D: Appl. Phys., 2006, 39: 4992. [12] Wang Meili, Huang Changgang, Huang Zhi, et al. Optical Materials, 2009, 31: 1502. [13] Du Y P, Zhang Y W, Sun L D, et al. Phys. Chem. C, 2008, 112: 12234. [14] Cheng B C, Zhang Z D, Liu H J, et al. J. Mater. Chem., 2010, 20; 7821. [15] Zhang Y Z, Liu Y P, Wu L H, et al. J. Phys. D: Appl. Phys., 2009, 42: 085106. |
[1] |
LIU Lu-yao1, ZHANG Bing-jian1,2*, YANG Hong3, ZHANG Qiong3. The Analysis of the Colored Paintings from the Yanxi Hall in the Forbidden City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2054-2063. |
[2] |
CHEN Sheng, ZHANG Xun, XU Feng*. Study on Cell Wall Deconstruction of Pinus Massoniana during Dilute Acid Pretreatment with Confocal Raman Microscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2136-2142. |
[3] |
HE Qing1, JIANG Qin1, XING Li-da2, 3, AN Yan-fei1, HOU Jie4, HU Yi5. Microstructure and Raman Spectra Characteristics of Dinosaur Eggs from Qiyunshan, Anhui Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2143-2148. |
[4] |
TAN Ai-ling1, WANG Si-yuan1, ZHAO Yong2, ZHOU Kun-peng1, LU Zhang-jian1. Research on Vinegar Brand Traceability Based on Three-Dimensional Fluorescence Spectra and Quaternion Principal Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2163-2169. |
[5] |
ZHOU Meng-ran1, LAI Wen-hao1*, WANG Ya1, 2, HU Feng1, LI Da-tong1, WANG Rui1. Application of CNN in LIF Fluorescence Spectrum Image Recognition of Mine Water Inrush[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2262-2266. |
[6] |
CHEN Ji-wen1, XU Tao2, LIU Wei2, FANG Zhe1, QU Hua-yang1*, LIANG Yuan1, HU Xue-qiang1, LIU Ming-bo1. On-Line Determination of Light-Rare Earth Distribution by Energy Dispersive-X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2284-2289. |
[7] |
CAI Zong-qi1, FENG Wei-wei1, 2*, WANG Chuan-yuan1. The Study of Oil Film Thickness Measurement on Water Surface Based on Laser Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1661-1664. |
[8] |
WU Jun, YOU Jing-lin*, WANG Yuan-yuan, WANG Jian, WANG Min, Lü Xiu-mei. Raman Spectroscopic Study of Li2B4O7 Crystal and Melt Structure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1736-1740. |
[9] |
ZHANG Lu-tao, ZHOU Guang-ming*, ZHANG Cai-hong, LUO Dan. The Preparation of the New Membrane-Like Gold Nanoparticles Substrate and the Study of Its Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1741-1746. |
[10] |
CHEN Si-yuan1, YANG Miao1, LIU Xiao-yun2*, ZHA Liu-sheng1*. Study on Au@Ag Core-Shell Composite Bimetallic Nanorods Laoding Filter Paper as SERS Substrate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1747-1752. |
[11] |
MA Ying1, WANG Qi2, QIU Zhi-li1*, LU Tai-jin3, LI Liu-fen1, CHEN Hua3, DENG Xiao-qin1, BO Hao-nan1. In-Situ Raman Spectroscopy Testing and Genesis of Graphite Inclusions in Alluvial Diamonds from Hunan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1753-1757. |
[12] |
LIU Jia1, YANG Ming-xing1, 2*, DI Jing-ru1, 2, HE Chong2. Spectra Characterization of the Uvarovite in Anorthitic Jade[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1758-1762. |
[13] |
OUYANG Ai-guo, ZHANG Yu, TANG Tian-yi, LIU Yan-de. Study on Density, Viscosity and Ethanol Content of Ethanol Diesel Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1772-1778. |
[14] |
PENG Heng, LIU Shuai, CHEN Xiang-bai*. Raman Study of Perovskite (C6H5CH2NH3)2PbBr4[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1763-1765. |
[15] |
ZHONG Qian1, 2, 3, WU Qiong2, 3, LIAO Zong-ting1, 2, 3*, ZHOU Zheng-yu1, 2, 3. Vibrational Spectral Characteristics of Ensignia Actinolite Jade from Guangxi, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1786-1792. |
|
|
|
|