|
|
|
|
|
|
A Combination of Multiple Deep Learning Methods Applied to Small-Sample Space Objects Classification |
DENG Shi-yu1, 2, LIU Cheng-zhi1, 4*, TAN Yong3*, LIU De-long1, ZHANG Nan1, KANG Zhe1, LI Zhen-wei1, FAN Cun-bo1, 4, JIANG Chun-xu3, LÜ Zhong3 |
1. Changchun Observatory of National Astronomical Observators, Chinese Academy of Sciences, Changchun 130117, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. School of Science, Changchun University of Science and Technology, Changchun 130022, China
4. Key Laboratory of Space Object & Debris Observation, PMO, CAS, Nanjing 210008, China
|
|
|
Abstract With the continuous improvement of the sensitivity, accuracy and easy use of spectral detection instruments in recent years, spectral technology has penetrated the identification and analysis of material components in all walks of life. Spectral observation of space targets is one of the important extensions of traditional optical observations. It has attracted much attention due to its non-contact and damage-free advantages. However, due to the limited observation conditions, the amount of spectral data of space targets is minimal. Traditional methods cannot achieve better results in classification analysis. In this paper, Firstly, the hyperspectral image of the space target is obtained through the spectroscopic camera terminal mounted on the 1.2 m space target optical telescope; Secondly, the one-dimensional spectral data of the space target is extracted through the astronomical photometric IRAF method; Finally, the combination of multiple deep learning methods, classify the spectral data of space targets. Accordingly, this paper proposes a combination of multiple deep learning methods to solve small sample data’s spatial object classification problem. This method uses Density Clustering method to roughly classify spatial targets, one-dimensional Generative Adversarial Network method to generate spatial target data, one-dimensional Convolutional Neural Network method to finely classify spatial targets, the combination of three methods can achieve relatively good experimental results and overall accuracy is about 79.1% (Based on the combination of Density Clustering, Oversampling, one-dimensional Convolutional Neural Network methods; Based on the combination of K-means, one-dimensional Generative Adversarial Network, one-dimensional Convolutional Neural Network methods; Based on the combination of K-means, Oversampling, One-dimensional Convolutional Neural Network methods, the overall accuracy is about 78.4%, 77.9%, 77.2%). In the rough classification model, the overall accuracy of the Density Clustering method is about 0.67% higher than the K-means method; In the data augmentation model, the overall accuracy of the one-dimensional Generative Adversarial Network method is about 1.52% higher than the Oversampling method; In the fine classification model, the two-layer network of the one-dimensional Convolutional Neural Network method has an average accuracy of only about 0.003% higher than the three-layer network, but the calculation time is longer. The accuracy of the four combined methods are higher than the single method. The experimental results show that the combination method proposed in this paper can achieve fine classification and high accuracy when the small sample space target category is unknown. It provides a certain reference value for realizing the integrated analysis of the map under the minimal data volume of the space target.
|
Received: 2021-01-08
Accepted: 2021-02-07
|
|
Corresponding Authors:
LIU Cheng-zhi, TAN Yong
E-mail: lcz@cho.ac.cn;laser95111@126.com
|
|
[1] Kim K J, Cho S. Pattern Analysis & Applications, 2015,(18): 553. [2] YAO Yan, SHEN Xiao-min, QIU Qian, et al(姚 燕, 沈晓敏, 邱 倩, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(6): 1857.
[3] Mohiuddin A, Raihan S, Syed M S I. Electronics, 2020, 9(8): 1295.
[4] Rodriguez, Alex, Laio, et al. Science, 2014, 344(6191): 1492.
[5] Rudolf S, Kristian S. Advances in Data Analysis and Classification, 2020,15(1):83.
[6] LI Yan-xia, CHAI Yi, HU You-qiang, et al(李艳霞, 柴 毅, 胡友强, 等). Control and Decision(控制与决策), 2019, 34(4): 673.
[7] Ghahramani Z, Welling M, Cortes C. NIPS,2014,(2): 2672.
[8] Wang Z, She Q, Ward T E. Generative Adversarial Networks: A Sarvey and Taxonomy, 2019, arXiv: 1906.01529[CS.LG].
[9] Koziarski M, Krawczyk B, Wozniak M. Neurocomputing, 2019,(343): 19.
[10] LeCun Y, Bottou L, Bengio Y, et al. Proceedings of the IEEE, 1998,(86): 2278.
[11] Zheng Z P, Qiu B, Luo A L, et al. Publications of the Astronomical Society of the Pacific, 2020, 132(1008): 024504.
|
[1] |
JI Jiang-tao1, 2, LI Peng-ge1, JIN Xin1, 2*, MA Hao1, 2, LI Ming-yong1. Study on Quantitative Detection of Tomato Seedling Robustness
in Spring Seedling Transplanting Period Based on VIS-NIR
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1741-1748. |
[2] |
ZHENG Yi1, 2, 3, WANG Yao1, 2, LIU Yan1, 2*. Study on Classification and Recognition of Mountain Meadow Vegetation Based on Seasonal Characteristics of Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1939-1947. |
[3] |
PENG Ren-miao1, 2, XU Peng-peng2, ZHAO Yi-mo2, BAO Li-jun1, LI Cheng2*. Identification of Two-Dimensional Material Nanosheets Based on Deep Neural Network and Hyperspectral Microscopy Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1965-1973. |
[4] |
JIANG Rong-chang1, 2, GU Ming-sheng2, ZHAO Qing-he1, LI Xin-ran1, SHEN Jing-xin1, 3, SU Zhong-bin1*. Identification of Pesticide Residue Types in Chinese Cabbage Based on Hyperspectral and Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1385-1392. |
[5] |
JI Rong-hua1, 2, ZHAO Ying-ying2, LI Min-zan2, ZHENG Li-hua2*. Research on Prediction Model of Soil Nitrogen Content Based on
Encoder-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1372-1377. |
[6] |
ZHAO Yong1, HE Men-yuan1, WANG Bo-lin2, ZHAO Rong2, MENG Zong1*. Classification of Mycoplasma Pneumoniae Strains Based on
One-Dimensional Convolutional Neural Network and
Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1439-1444. |
[7] |
WENG Shi-zhuang*, CHU Zhao-jie, WANG Man-qin, WANG Nian. Reflectance Spectroscopy for Accurate and Fast Analysis of Saturated
Fatty Acid of Edible Oil Using Spectroscopy-Based 2D Convolution
Regression Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1490-1496. |
[8] |
PAN Dong-rong1, 2, HAN Tian-hu2, YAN Hao-wen1*. Spatiotemporal Dynamics of Vegetation Coverage in Different Ecological Areas of the Qilian Mountains Based on Spectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1192-1198. |
[9] |
TAN Ai-ling1, CHU Zhen-yuan1, WANG Xiao-si1, ZHAO Yong2*. Detection of Pearl Powder Adulteration Based on Raman Spectroscopy and DCGAN Data Enhancement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 769-775. |
[10] |
JIAO Qing-liang1, LIU Ming1*, YU Kun2, LIU Zi-long2, 3, KONG Ling-qin1, HUI Mei1, DONG Li-quan1, ZHAO Yue-jin1. Spectral Pre-Processing Based on Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 292-297. |
[11] |
YU Guo-wei1, MA Ben-xue1,2*, CHEN Jin-cheng1,3, DANG Fu-min4,5, LI Xiao-zhan1, LI Cong1, WANG Gang1. Vis-NIR Spectra Discriminant of Pesticide Residues on the Hami Melon Surface by GADF and Multi-Scale CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3701-3707. |
[12] |
DUAN Long1, YAN Tian-ying1, WANG Jiang-li2, 3, YE Wei-xin1, CHEN Wei1, GAO Pan1, 2*, LÜ Xin2, 3*. Combine Hyperspectral Imaging and Machine Learning to Identify the Age of Cotton Seeds[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3857-3863. |
[13] |
LI Yan-kun1*, DONG Ru-nan1, ZHANG Jin2, HUANG Ke-nan3, MAO Zhi-yi4. Variable Selection Methods in Spectral Data Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3331-3338. |
[14] |
CHEN Mei-chen, YU Hai-ye, LI Xiao-kai, WANG Hong-jian, LIU Shuang, KONG Li-juan, ZHANG Lei, DANG Jing-min, SUI Yuan-yuan*. Response Analysis of Hyperspectral Characteristics of Maize Seedling Leaves Under Different Light and Temperature Environment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3545-3551. |
[15] |
SHENG Hui1, CHI Hai-xu1, XU Ming-ming1*, LIU Shan-wei1, WAN Jian-hua1, WANG Jin-jin2. Inland Water Chemical Oxygen Demand Estimation Based on Improved SVR for Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3565-3571. |
|
|
|
|