|
|
|
|
|
|
Ultraviolet Spectrum and Excitation Properties Calculations of Vitamin C Based on Density Functional Theory |
LIN Yan1, SU Jun-hong1*, TANG Yan-lin2, YANG Dan3 |
1. Department of Photoelectric Engineering, Xi’an Technological University, Xi’an 710021, China
2. College of Physics, Guizhou University, Guiyang 550025, China
3. College of Mathematics and Statistics, Kashi University, Kashi 844008, China |
|
|
Abstract Vitamin C is an acidic hexose derivative, which has two isomers of L-type (ascorbic acid (AA)) and D-type (dehydroascorbic acid (DHA)). DHA is the first stable oxidation product of AA and is the reversible oxidized form of AA. Therefore, any discussion of the nature and measurement of AA will involve the nature of DHA in the same system. The ultraviolet spectrum is a visual representation of how easy and difficult the electron transition is. Unreasonable theoretical calculation method and molecular model construction will lead to misjudgment of the maximum absorption peak of vitamin C, and thus can not accurately characterize the excitation properties of vitamin C. In order to accurately explore the antioxidant mechanism of vitamin C, based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT), the molecular structure, ultraviolet spectrum and electron excitation characteristics of ascorbic acid (AA) and dehydroascorbic acid (DHA) of vitamin C were calculated and analyzed at the level of pbepbe/6-311++g(2d,2p) and B3LYP/6-311++g(2d,2p) in liquid phase environment in this paper. The results showed that the pbepbe/6-311++g(2d, 2p) method is the more accurate method to calculate the ultraviolet absorption spectrum of AA. Compared with AA, the ring structure of DHA has a significant plane distortion than AA. According to the analysis of the spectral contribution shows that the ground state transition to S1, S2, S3, S4, S14, S18 excited state is the main reason for AA ultraviolet spectrum, the absorption peak of AA at 200.171 5 nm contains the electronic excitations of n→π* and n→σ* electronic transitions, the absorption peak at 266.924 8 nm contains n→π* and π→π* transitions. The reason for the ultraviolet spectrum of DHA is mainly due to the ground state transition to S6, S9, S12, S13, S15, S16, S17, S19, S20 excited state, the strongest absorption peak of DHA is located at 181.024 8 nm, which has the transition characteristics of n→σ* and n→π*. The weak absorption peak at 231.346 39 nm refers to the n→π* transition, and the absorption peak at 282.466 8 nm mainly corresponds to the n→π* transition. By analysing the hole-electron distribution and its derivatives, it is possible to qualitatively identify the characteristics of the 7 excited states that play a major role in the AA absorption peak and the 9 excited states that make major contributions in the DHA absorption peak. Among them, the S4, S13, S14 excited states that make major contributions to the AA ultraviolet spectrum and the S6, S9, S17, S20 excited states that make major contributions to the DHA ultraviolet spectrum have obvious charge transfer, the centroid center of the hole and the center of the electron centroid are separated, which can be referred to as the charge transfer excitation, the separation of electrons and holes in other excited states is very small, which can be referred to as local excitation.
|
Received: 2020-12-27
Accepted: 2021-03-30
|
|
Corresponding Authors:
SU Jun-hong
E-mail: sujhong@126.com
|
|
[1] Ogata Y, Kosugi Y. Tetrahedron, 1970, 26(20): 4711.
[2] Dabbagh H A, Azami F, Farrokhpour H, et al. Journal of the Chilean Chemical Society, 2014, 59(3): 2588.
[3] Deutsch J C. Journal of Chromatography A, 2000, 881(1-2): 299.
[4] LIU Jing-li, GUO Yong, XUE Ying, et al(刘靖丽, 郭 勇, 薛 英, 等). Chemical Journal of Chinese Universities(高等学校化学学报), 2009, 30(1): 100.
[5] Kim S, Chen J, Cheng T, et al. Nucleic Acids Res.,2019 Jan. 8; 47(D1): D1102.
[6] PENG Jie, ZHANG Si-jie, WANG Ke, et al(彭 婕, 张嗣杰, 王 苛, 等). Acta Physica Sinica(物理学报), 2020, 69(2): 023101.
[7] Le Bahers T, Adamo C, Ciofini I. Journal of Chemical Theory & Computation, 2011, 7(8): 2498.
[8] Gross E K U, Kohn W. Advances in Quantum Chemistry, 1990, 21(22): 255.
[9] Jaffe J E, Lin Z, Hess A C. Physical Review B, 1998, 57(19): 11834.
[10] Becke A D. The Journal of Chemical Physics, 1993, 98(7): 5648.
[11] Stratmann R E, Scuseria G E, Frisch M J. The Journal of Chemical Physics, 1998, 109(19): 8218.
[12] Lu T, Chen F. Journal of Computational Chemistry, 2012, 33(5): 580. |
[1] |
XIE Yu-yu1, 2, 3, HOU Xue-ling1, CHEN Zhi-hui2, AISA Haji Akber1, 3*. Density Functional Theory Studies on Structure and Spectra of Salidroside Molecule[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1786-1791. |
[2] |
SONG Hong-yan, ZHAO Hang, YAN Xia, SHI Xiao-feng, MA Jun*. Adsorption Characteristics of Marine Contaminant Polychlorinated Biphenyls Based on Surface-Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 704-712. |
[3] |
HAN Yu1, SONG Shao-zhong2*, ZHANG Jia-huan3, TAN Yong1*, LIU Chun-yu1, ZHOU Yun-quan1, QU Guan-nan1, HAN Yan-li4, ZHANG Jing3, HU Yu3, MENG Wei-shi3, LIU Huan-jun5, ZHANG Yi-xiang1, LI Jia-yi1. Research on Soybean Bacterial Disease Markers Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 459-463. |
[4] |
CHEN Feng-xia1, YANG Tian-wei2, LI Jie-qing1, LIU Hong-gao3, FAN Mao-pan1*, WANG Yuan-zhong4*. Identification of Boletus Species Based on Discriminant Analysis of Partial Least Squares and Random Forest Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 549-554. |
[5] |
WU Xiao-jing1, LI Zi-xuan1, ZHANG Yan-dong1, CHENG Long-jiu2. Study on the Effect of Temperature on Deep Eutectic Solvent by Two-Dimensional Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 99-103. |
[6] |
LU Li-min, SHI Bin, TANG Tian-yu, ZHAO Xian-hao, WEI Xiao-nan, TANG Yan-lin*. Spectral Analysis of Epinephrine Molecule Based on Density Functional Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 248-252. |
[7] |
WANG Xiao-bin1, 2, 3, ZHANG Xi1, GUAN Chen-zhi1, HONG Hua-xiu1, HUANG Shuang-gen2*, ZHAO Chun-jiang3. Quantitative Detection of Ascorbic Acid Additive in Flour Based on Raman Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3765-3770. |
[8] |
XU Hui-hua, SHI Dong-po*, WU Hao, YIN Xian-qing, ZHENG Yan-cheng, CHEN Wu, LI Geng. Influence of AEO-9 on Ultraviolet Absorbance Spectrum of TDBAC Reduced by β-CD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3931-3935. |
[9] |
TAN Ai-ling1, ZHAO Rong1, SUN Jia-lin1, WANG Xin-rui1, ZHAO Yong2*. Detection of Chlorpyrifos Based on Surface-Enhanced Raman Spectroscopy and Density Functional Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3462-3467. |
[10] |
YANG Yun-fan1, HU Jian-bo1, LIU Yong-gang1,2*, LIU Qiang-qiang3, ZHANG Hang4, XU Jian-jie5, GUO Teng-xiao5. DFT/TDDFT Study on Spectra of Peptides[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3172-3177. |
[11] |
ZHANG Yan-yan1, 2, LI Dong-xian1, 2, MA Liu-zheng1, 2, ZHANG Hao1, 2, SU Rui1, 2, LI Lin-ze1, 2, HU Jian-dong1, 2, 3*. Spectroscopic and Structure Study of Plant Hormone Abscisic Acid: Theory and Experiments[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2859-2865. |
[12] |
ZHANG Tong-jun, LI De-hua, CAO Qiu-hong, LIN Hong-mei, HAO Jian-jun. Experimental Measurement and Theoretical Simulation on Terahertz Spectra of Crystal Acetamiprid[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2012-2017. |
[13] |
YANG Lu-ze, LIU Miao*. Construction of a 3D-QSAR Model With Dual Spectral Effects and Its Application in Molecular Modification of Environmentally Friendly PBBs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 430-434. |
[14] |
TONG Ang-xin, TANG Xiao-jun*, ZHANG Feng, WANG Bin. Species Identification of NaCl, NaOH and β-Phenylethylamine Based on Ultraviolet Spectrophotometry and Supervised Pattern Recognition Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 448-453. |
[15] |
CHEN Chao-yang1, HUANG Wei-zhi1, GAO Qiang2, FAN Lu-wei3, Andy Hsitien Shen1*. Assignments on Raman Peaks of Red Coral Based on Experimental Raman Spectroscopy and Density Functional Theory Calculation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 127-130. |
|
|
|
|