|
|
|
|
|
|
Preliminary Study on the Intertemporal Predictability of the Physiological Index of Early Rice Based on Hyperspectral |
ZHU Hai-jun1, FU Hong-yu1, 2, WANG Xue-hua1*, CUI Guo-xian1, 2*,SHI Ai-long1, XUE Wei-chun3 |
1. Agronomy College, Hunan Agricultural University, Changsha 410128, China
2. Ramie Research Institute, Hunan Agricultural University, Changsha 410128, China
3. Agriculture and Rural Bureau of Heshan District, Yiyang 413000, China |
|
|
Abstract Chlorophyll and leaf nitrogen content (LNC) are important indicators of crop growth. Real-time and accurate monitoring of Chlorophyll and LNC is helpful for field management and improvement of crop quality and yield. Currently, hyperspectral technology and empirical regression methods are widely used to construct crop biochemical parameter prediction models. However, there are still gaps in the research on predicting leaf biochemical parameters across periods. In this study, 120 leaf hyperspectral data, chlorophyll and LNC were obtained at five stages of early rice. Three different algorithms, namely, Partial Least Squares Regression (PLSR), Random Forest (RF), and Support Vector Regression (SVR) were used to establish inter-temporal prediction models for Chlorophyll and LNC in different growth stages. In addition, the intertemporal prediction model and the traditional non-intertemporal prediction model were evaluated. The results showed that the early rice chlorophyll inter-temporal prediction SVR model had the best prediction effect, with the inter-tillering prediction model having R2 of 0.54, the inter-booting prediction model has R2 of 0.36, the inter-heading prediction model has R2 of 0.30, inter-grouting prediction model has R2 of 0.55, and inter-mature prediction model has R2 of 0.74. The intertemporal prediction model of early rice leaf LNC was poor, and the LNC cannot be intertemporally predicted. Compared with the non-intertemporal prediction model, although the accuracy of the intertemporal prediction model has decreased, it can effectively overcome the shortcomings of poor universality of the empirical model, which is beneficial to realize the physiological characteristics of different growth stages of crops in the same life cycle. At the same time, we found that crop physiological indicators have inter-temporal predictability. This concept provides new ideas for the prediction of crop phenotype, internal crop quality and yield.
|
Received: 2020-12-04
Accepted: 2021-03-19
|
|
Corresponding Authors:
WANG Xue-hua, CUI Guo-xian
E-mail: 13873160151@163.com;627274845@qq.com
|
|
[1] Yao X, Huang Y, Shang G, et al. Remote Sensing,2015, 7:14939.
[2] LIN Yi, LIU Si-yuan, YAN Lei, et al(林 沂, 刘思远, 晏 磊, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(6): 1956.
[3] Hu H, Bai Y L, Yang L P, et al. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1317.
[4] Zhang Manyin, Li Mengjie, Liu Weiwei, et al. Spectroscopy Letters, 2019, 52(9): 483.
[5] Qiu Shanshan, Wang Jun, Gao Liping. Journal of Agricultural and Food Chemistry, 2014, 62(27): 6426.
[6] ZHANG Yin-jie, WANG Lei, BAI You-lu, et al(张银杰, 王 磊, 白由路, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(9): 2829.
[7] Li Zhenhai, Jin Xiuliang, Yang guijun, et al. Remote Sensing, 2018, 10(9): 1.
[8] YANG Fu-qin, FENG Hai-kuan, LI Zhen-hai, et al(杨福芹, 冯海宽, 李振海, 等). Journal of Shanxi Agricultural University·Nature Science Edition(山西农业大学学报·自然科学版), 2020, 40(5): 99.
[9] Katherine Meacham-Hensold, Christopher M Montes, Jin Wu, et al. Remote Sensing of Environment, 2019, 231: 111176.
[10] LIANG Xue-ying, FAN Feng-lei(梁雪映, 樊风雷). Journal of Agricultural Science and Technology(中国农业科技导报), 2019, 21(1): 51.
[11] Ghasemi J B, Tavakoli H. Analytical Methods, 2013, 5: 1863.
[12] Shao Y, Zhao C, Bao Y, et al. Food & Bioprocess Technology, 2012, 5(1): 100.
[13] Yang J, Du L, Gong W, et al. PLOS ONE, 2018, 13(1), 1. |
[1] |
LIU Yan-de, WANG Shun. Research on Non-Destructive Testing of Navel Orange Shelf Life Imaging Based on Hyperspectral Image and Spectrum Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1792-1797. |
[2] |
CHEN Yuan-zhe1, WANG Qiao-hua1, 2*, TIAN Wen-qiang1, XU Bu-yun1, HU Jian-chao1. Nondestructive Determinations of Texture and Quality of Preserved Egg Gel by Hyperspectral Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1985-1992. |
[3] |
ZHANG Jie1, 2, XU Bo1, FENG Hai-kuan1, JING Xia2, WANG Jiao-jiao1, MING Shi-kang1, FU You-qiang3, SONG Xiao-yu1*. Monitoring Nitrogen Nutrition and Grain Protein Content of Rice Based on Ensemble Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1956-1964. |
[4] |
ZHENG Yi1, 2, 3, WANG Yao1, 2, LIU Yan1, 2*. Study on Classification and Recognition of Mountain Meadow Vegetation Based on Seasonal Characteristics of Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1939-1947. |
[5] |
PENG Ren-miao1, 2, XU Peng-peng2, ZHAO Yi-mo2, BAO Li-jun1, LI Cheng2*. Identification of Two-Dimensional Material Nanosheets Based on Deep Neural Network and Hyperspectral Microscopy Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1965-1973. |
[6] |
JIANG Rong-chang1, 2, GU Ming-sheng2, ZHAO Qing-he1, LI Xin-ran1, SHEN Jing-xin1, 3, SU Zhong-bin1*. Identification of Pesticide Residue Types in Chinese Cabbage Based on Hyperspectral and Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1385-1392. |
[7] |
JING Xia1, ZHANG Jie1, 2, WANG Jiao-jiao2, MING Shi-kang2, FU You-qiang3, FENG Hai-kuan2, SONG Xiao-yu2*. Comparison of Machine Learning Algorithms for Remote Sensing
Monitoring of Rice Yields[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1620-1627. |
[8] |
JIANG Qing-hu1, LIU Feng1, YU Dong-yue2, 3, LUO Hui2, 3, LIANG Qiong3*, ZHANG Yan-jun3*. Rapid Measurement of the Pharmacological Active Constituents in Herba Epimedii Using Hyperspectral Analysis Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1445-1450. |
[9] |
ZHANG Jun-yi1, 2, GAO De-hua1, SONG Di1, QIAO Lang1, SUN Hong1, LI Min-zan1*, LI Li1. Wavelengths Optimization and Chlorophyll Content Detection Based on PROSPECT Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1514-1521. |
[10] |
DAI Ruo-chen1, TANG Huan2*, TANG Bin1*, ZHAO Ming-fu1, DAI Li-yong1, ZHAO Ya3, LONG Zou-rong1, ZHONG Nian-bing1. Study on Detection Method of Foxing on Paper Artifacts Based on
Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1567-1571. |
[11] |
LI De-hui1, WU Tai-xia1*, WANG Shu-dong2*, LI Zhe-hua1, TIAN Yi-wei1, FEI Xiao-long1, LIU Yang1, LEI Yong3, LI Guang-hua3. Hyperspectral Indices for Identification of Red Pigments Used in Cultural Relic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1588-1594. |
[12] |
LIU Mei-chen, XUE He-ru*, LIU Jiang-ping, DAI Rong-rong, HU Peng-wei, HUANG Qing, JIANG Xin-hua. Hyperspectral Analysis of Milk Protein Content Using SVM Optimized by Sparrow Search Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1601-1606. |
[13] |
LIU Yan-de, LI Mao-peng, HU Jun, XU Zhen, CUI Hui-zhen. Detection of Citrus Granulation Based on Near-Infrared
Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1366-1371. |
[14] |
ZHANG Zhao1, 2, 3, 4, YAO Zhi-feng1, 3, 4, WANG Peng1, 3, 4, SU Bao-feng1, 3, 4, LIU Bin3, 4, 5, SONG Huai-bo1, 3, 4, HE Dong-jian1, 3, 4*, XU Yan5, 6, 7, HU Jing-bo2. Early Detection of Plasmopara Viticola Infection in Grapevine Leaves Using Chlorophyll Fluorescence Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1028-1035. |
[15] |
AN Ying1, 2, 4, DING Jing3, LIN Chao2, LIU Zhi-liang1, 4*. Inversion Method of Chlorophyll Concentration Based on
Relative Reflection Depths[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1083-1091. |
|
|
|
|