|
|
|
|
|
|
Mechanism Investigation of Cement-Based Permeable Crystalline Waterproof Material Based on Spectral Analysis |
HE Xiong-fei1, 2, HUANG Wei3, TANG Gang3, ZHANG Hao3* |
1. Guangdong Province Key Laboratory of Intelligent Monitoring and Maintenance of Tunnel Structure, Guangzhou 511458, China
2. China Railway Tunnel Consultants Co., Ltd., Guangzhou 511458, China
3. School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243032, China |
|
|
Abstract In this work, permeable crystalline waterproof material was used as the research object, which was added into cement-based materials to fabricate cement-based permeable crystalline waterproof material (CCCW). X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were applied to investigate the composition of CCCW. On this base, the effect of CCCW on mechanical properties to the samples were researched, and scanning electron microscope (SEM) as well as X-ray diffraction (XRD) were introduced to investigate micro-morphology and phase composition of the samples, which were combined with the relevant data about compress strength restoration ratio and permeability resistance to illuminate work mechanism of CCCW. It was confirmed that permeable crystalline waterproof material contained calcium oxide, sodium silicate, sodium disilicate, calcium carbonate, calcium hydroxide, PAH based water reducing agent and ethylenediaminetetraacetate. CCCW samples with permeable crystalline waterproof material loading exhibited excellent mechanical property, permeability resistance and self-healing property. The sample presented flexural strength at 7, 14 and 28 d of 2.65, 3.29 and 4.35 MPa, and exhibited compress strength of 12.11,14.57 and 16.77 MPa, respectively. The CCCW sample presented first permeability and second permeability of 0.8 and 0.9 MPa, which showed compress strength restoration at 7, 14, 28 and 56 d for 80.91%,90.35%, 100.44% and 105.90%, respectively. The work mechanism of CCCW has proposed: sodium silicate and sodium disilicate in permeable crystalline waterproof material reacted with Ca2+ in cement to form calcium silicate hydrate gel (C—S—H) and effectively repair the cracks. Calcium oxide, calcium hydroxide and calcium carbonate played as Ca2+ compensators and provided abundant free Ca2+, which could effectively promote the healing process of the cracks underwater environment. Calcium carbonate gradually dissolved in the water environment and produced Ca2+, CO2-3 and HCO-3, the generated CO2-3 and HCO-3 could reacted with abundant Ca2+ to produce calcium carbonate crystal, which combined with C—S—H gel to blocked the crack structure of CCCW.
|
Received: 2020-10-24
Accepted: 2021-01-28
|
|
Corresponding Authors:
ZHANG Hao
E-mail: fengxu19821018@163.com
|
|
[1] WANG Jin-hua, CAO Lan-jie, XU Guo-qiang, et al(汪金花,曹兰杰,徐国强, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2019, 39(6): 1724.
[2] Tung N D, Betschoga C, Tue N V. Engineering Structures,2020, 222: 111.
[3] Zhang H. Ceramics International,2020, 46(7): 9972.
[4] Teng L W, Huang R, Chen J, et al. Materials,2014, 7(1): 399.
[5] Zhang H, Fang Y. Journal of Alloys and Compounds,2019, 781: 201.
[6] Pei X F, Noel M, Green M, et al. Surface and Coatings Technology,2017, 315: 188.
[7] YANG Xiao-hua, ZHENG Kun-long, XU Li-xiao(杨晓华, 郑坤隆, 徐礼笑). China Journal of Highway Transport(中国公路学报),2019, 32(7): 129.
[8] LI Bing, GUO Rong-xin, WAN Fu-xiong, et al(李 冰, 郭荣鑫, 万夫雄, 等). Non-metallic Mines(非金属矿),2019, 42(1): 37.
[9] Li Guangyan,Huang Xiaofeng,Lin Jiesheng, et al. Construction and Building Materials,2019, 200: 36.
[10] Prywer J, Olszynski M. Journal of Crystal Growth,2013, 375: 108.
[11] Qiu J S, Tan H S, Yang E H. Cement and Concrete Composites,2016, 73: 203. |
[1] |
MA Fang1, HUANG An-min2, ZHANG Qiu-hui1*. Discrimination of Four Black Heartwoods Using FTIR Spectroscopy and
Clustering Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1915-1921. |
[2] |
FAN Chun-hui1, 2, ZHENG Jin-huan3, LIU Hong-xin1. FTIR, 2D-IR and XPS Analyses on the Mechanism of Protoplast Derived From Calendula Officinalis in Response to Lead and Cadmium in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1420-1425. |
[3] |
YAN Hua1, LIU Xing-hua2, DING Yong3, ZHAO Zhi1, LUO Yong-feng1, WU Yu-hong1, YAN Peng1, DONG Lu1, WANG Da-xi4. Instantaneous Emission Spectra and Mechanism Study on the Reaction of ClF3O and n-Decane[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1522-1528. |
[4] |
YANG Jun-jie1, HUANG Miao-fen2*, LUO Wei-jian3, WANG Zhong-lin2, XING Xu-feng2. The Effect of Oil-in-Water on the Upward Radiance Spectrum in Seawater[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1648-1653. |
[5] |
XU Heng-shan2, GONG Guan-qun1, 2*, ZHANG Ying-jie1, 2, YUAN Fei2, ZHANG Yong-xia2. The Spectroscopic Characteristics of Fulvic Acid Complexed With Copper Ion and the Construction of the Mechanism of Action[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1010-1016. |
[6] |
ZHANG Dian-kai1, LI Yan-hong1*, ZI Chang-yu1, ZHANG Yuan-qin1, YANG Rong1, TIAN Guo-cai2, ZHAO Wen-bo1. Molecular Structure and Molecular Simulation of Eshan Lignite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1293-1298. |
[7] |
WANG Fang-fang1, ZHANG Xiao-dong1, 2*, PING Xiao-duo1, ZHANG Shuo1, LIU Xiao1, 2. Effect of Acidification Pretreatment on the Composition and Structure of Soluble Organic Matter in Coking Coal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 896-903. |
[8] |
HU Chao-shuai1, XU Yun-liang1, CHU Hong-yu1, CHENG Jun-xia1, GAO Li-juan1, ZHU Ya-ming1, 2*, ZHAO Xue-fei1, 2*. FTIR Analysis of the Correlation Between the Pyrolysis Characteristics and Molecular Structure of Ultrasonic Extraction Derived From Mid-Temperature Pitch[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 889-895. |
[9] |
YANG Jiong1, 2, QIU Zhi-li1, 4*, SUN Bo3, GU Xian-zi5, ZHANG Yue-feng1, GAO Ming-kui3, BAI Dong-zhou1, CHEN Ming-jia1. Nondestructive Testing and Origin Traceability of Serpentine Jade From Dawenkou Culture Based on p-FTIR and p-XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 446-453. |
[10] |
ZHAO Wen-hua1, HAN Xiang-na1*, CHEN Cong1, WANG Xiao-lin2, 3, 4*. Spectral Analysis of the Weathering of Yardang Buried Pterosaur Fossils——A Case Study of Yardang Near the No.2 Water Source of Dahaidao[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 561-567. |
[11] |
ZHOU Jing1,2, ZHANG Qing-qing1,2, JIANG Jin-guo2, NIE Qian2, BAI Zhong-chen1, 2*. Study on the Rapid Identification of Flavonoids in Chestnut Rose (Rosa Roxburghii Tratt) by FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3045-3050. |
[12] |
Samy M. El-Megharbel*,Moamen S. Refat. In First Time: Synthesis and Spectroscopic Interpretations of Manganese(Ⅱ), Nickel(Ⅱ) and Mercury(Ⅱ) Clidinium Bromide Drug Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3316-3320. |
[13] |
Samy M. El-Megharbel*, Moamen S. Refat. Preparations and Spectroscopic Studies on the Three New Strontium(Ⅱ), Barium(Ⅱ), and Lead(Ⅱ) Carbocysteine Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2975-2979. |
[14] |
WANG Yi1, 2, LI Chang-rong1, 2*, ZHUANG Chang-ling1, 2. Study on Alumina/Lanthanum Oxide X-Ray Diffraction and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2480-2483. |
[15] |
LI Huan-tong1, 2, CAO Dai-yong3*, ZHANG Wei-guo1, 2, WANG Lu4. XRD and Raman Spectroscopy Characterization of Graphitization Trajectories of High-Rank Coal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2491-2498. |
|
|
|
|