|
|
|
|
|
|
Research on Rich Borer Detection Methods Based on Hyperspectral Imaging Technology |
OUYANG Ai-guo, WAN Qi-ming, LI Xiong, XIONG Zhi-yi, WANG Shun, LIAO Qi-cheng |
School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Intelligent Electromechanical Equipment Innovation Research Institute, Nanchang 330013, China |
|
|
Abstract To be able to forewarn rice borers and control the spraying pesticide dosage, to realize the nondestructive detection of rice borers’ damage. A feature band detection method based on principal component analysis and an optimal band detection method based on iterative threshold is proposed, the characteristic band and the optimal band of rice stem borers detection are determined, and the images of single band and the combined band are extracted to segment wormholes, to realize the accurate nondestructive detection of rice borers. Firstly, the reflectance information of 120 samples obtained by hyperspectral analysis determined that the spectral region was 450~1 000 nm. Band detection method based on principal component analysis characteristics, principal component analysis in the hyperspectral image, in which the first five principal components determine the third principal component images as the best image comparison, and then according to the third principal component in the image, the contribution rate of each band features to select wavelength (668.8 and 750 nm). Finally, global threshold segmentation and image masking are combined to distinguish the wormhole region. Moreover, utilization based on iterative threshold detection method, the optimal band in the visible band 450~750 nm range and near-infrared band 750~1 000 nm range application to pick the best single band, mixing distance by single band combination, a combination of single band and band to iterative threshold segmentation. Among them, 753.2 nm single band has the best segmentation effect, and 753.5 nm single band is determined as the optimal band. And then extract the band images using a wormhole extraction method based on iterative threshold and morphological processing. Finally, we can distinguish the rice stalk foraminifera region to realize the existence of rice stems infested with borers. The results showed that the detection rates of 60 pest-rice stalks and 60 normal rice stalks were 95.8% and 93.3% respectively, at 668.8 and 750 nm bands by using the principal component analysis-based characteristic band detection method. The optimal band detection method based on the iterative threshold has a detection rate of 96.7% at 753.5 nm band. This indicates that the optimal band detection method based on the iterative threshold is more accurate for the detection of rice borer and also indicates that the acquired characteristic band and optimal band provide theoretical reference for the future multi-spectral imaging technology of rice borers’ damage.
|
Received: 2020-11-25
Accepted: 2021-02-17
|
|
|
[1] XIANG Yu-yong,ZHANG Fan,XIA Bi-wen,et al(向玉勇,张 帆,夏必文,等). China Plant Protection(中国植保导刊),2011,31(11):20.
[2] Guo A, Huang W, Ye H, et al. Remote Sensing, 2020, 12(9): 1419.
[3] Haff R P,Saranwong S,Thanapase W,et al. Postharvest Biology and Technology,2013,86(1):23.
[4] TIAN You-wen,CHENG Yi,WANG Xiao-qi,et al(田有文,程 怡,王小奇,等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报),2014,30(12):132.
[5] WU Long-guo,HE Jian-guo, LIU Gui-shan, et al(吴龙国,何建国,刘贵珊,等). Chinese Jourmal of Luminescence(发光学报),2013,34(11):1527.
[6] Haff R P,Saranwong S,Thanapase W,et al. Postharvest Biology and Technology,2013,86(1):23.
[7] WANG Xiao-long,DENG Ji-zhong,HUANG Hua-sheng,et al(王小龙,邓继忠,黄华盛,等). Journal of South China Agricultural University(华南农业大学学报),2019,40(3):97.
[8] LIU De-hua,ZHANG Shu-juan,WANG Bin,et al(刘德华,张淑娟,王 斌,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2015,35(11):3167.
[9] MA Ya-nan,HUANG Min,LI Yan-hua,et al(马亚楠,黄 敏,李艳华,等). Science and Techology of Food Industry(食品工业科技),2014,35(14):59.
[10] Wu X,Zhang W Z,Qiu Z J,et al. Applied Engineering in Agriculture,2016,32:311.
[11] Liu G S,He J G,Wang S L,et al. International Journal of Food Properties,2016,19:41.
[12] Wang J,Nakano K,Ohashi S,et al. Original Research Article Biosystems Engineering,2011,108(4):345.
[13] Rady A,Ekramirad N,Adedeji A A,et al. Postharvest Biology and Technology,2017,129:37.
[14] ZHOU Hong-ping, HU Yi-lei, JIANG Hong-zhe, et al(周宏平,胡逸磊,姜洪喆,等). Transactions of the Chinese Society for Agricultural Machineary(农业机械学报),2021,52(5):308.
[15] ZHAO Chun-hui,CHEN Wan-hai,YANG Lei(赵春晖,陈万海,杨 雷). Journal of Natural Science of Heilongjian University(黑龙江大学自然科学学报),2007,24(5):592.
[16] TIAN You-wen,XING Xiao-qi,WANG Xiao-qi,et al(田有文,邢晓琪,王小奇,等). Journal of Shenyang Agricutural Universty(沈阳农业大学学报),2015,46(6):719.
[17] LI Cheng-ji,ZHANG Shu-juan,REN Rui,et al(李成吉,张淑娟,任 锐,等). Farm Roducts Rocessing(农产品加工创新版),2020,4:69.
[18] Ma Y N,Huang M,Yang B,et al. Computers and Electronics in Agriculture,2014,106:102. |
[1] |
LIU Yan-de, WANG Shun. Research on Non-Destructive Testing of Navel Orange Shelf Life Imaging Based on Hyperspectral Image and Spectrum Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1792-1797. |
[2] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[3] |
MIAO Shu-guang1, SHAO Dan1*, LIU Zhong-yu2, 3, FAN Qiang1, LI Su-wen1, DING En-jie2, 3. Study on Coal-Rock Identification Method Based on Terahertz
Time-Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1755-1760. |
[4] |
TIAN Xue1, CHE Qian1, YAN Wei-min1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Discrimination of Millet Varieties and Producing Areas Based on Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1841-1847. |
[5] |
WANG Ling-ling1, 2, 3, WANG Bo1, 2, 3, XIONG Feng1, 2, 3, YANG Lu-cun1, 2, LI Jing-jing4, XIAO Yuan-ming1, 2, 3, ZHOU Guo-ying1, 2*. A Comparative Study of Inorganic Elements in Cultivativing Astragalus Membranaceus From Different Habitats[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1407-1412. |
[6] |
TAN Yang1, WU Xiao-hong2, 3*, WU Bin4, SHEN Yan-jun1, LIU Jin-mao1. Qualitative Analysis of Pesticide Residues on Chinese Cabbage Based on GK Improved Possibilistic C-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1465-1470. |
[7] |
ZHANG Tian-liang, ZHANG Dong-xing, CUI Tao, YANG Li*, XIE Chun-ji, DU Zhao-hui, ZHONG Xiang-jun. Identification of Early Lodging Resistance of Maize by Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1229-1234. |
[8] |
ZHANG Xiao-hong1, JIANG Xue-song1*, SHEN Fei2*, JIANG Hong-zhe1, ZHOU Hong-ping1, HE Xue-ming2, JIANG Dian-cheng1, ZHANG Yi3. Design of Portable Flour Quality Safety Detector Based on Diffuse
Transmission Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1235-1242. |
[9] |
XIAO Shi-jie1, WANG Qiao-hua1, 2*, LI Chun-fang3, 4, DU Chao3, ZHOU Zeng-po4, LIANG Sheng-chao4, ZHANG Shu-jun3*. Nondestructive Testing and Grading of Milk Quality Based on Fourier Transform Mid-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1243-1249. |
[10] |
LI Lian-jie1, 2, FAN Shu-xiang2, WANG Xue-wen1, LI Rui1, WEN Xiao1, WANG Lu-yao1, LI Bo1*. Classification Method of Coal and Gangue Based on Hyperspectral
Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1250-1256. |
[11] |
SHI Ji-yong, LIU Chuan-peng, LI Zhi-hua, HUANG Xiao-wei, ZHAI Xiao-dong, HU Xue-tao, ZHANG Xin-ai, ZHANG Di, ZOU Xiao-bo*. Detection of Low Chromaticity Difference Foreign Matters in Soy Protein Meat Based on Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1299-1305. |
[12] |
YAO Shan1, ZHANG Xuan-ling1, CAI Yu-xin1, HE Lian-qiong1, LI Jia-tong1, WANG Xiao-long1, LIU Ying1, 2*. Study on Distribution Characteristics of Different Nitrogen and
Phosphorus Fractions by Spectrophotometry in Baiyangdian
Lake and Source Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1306-1312. |
[13] |
FAN Nai-yun, LIU Gui-shan*, ZHANG Jing-jing, YUAN Rui-rui, SUN You-rui, LI Yue. Rapid Determination of TBARS Contents in Tan Mutton Using Hyperspectral Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 713-718. |
[14] |
CAO Qiu-hong, LIN Hong-mei, ZHOU Wei, LI Zhao-xin, ZHANG Tong-jun, HUANG Hai-qing, LI Xue-min, LI De-hua*. Water Quality Analysis Based on Terahertz Attenuated Total Reflection Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 31-37. |
[15] |
QIAO Lu, WANG Song-lei*, GUO Jian-hong, HE Xiao-guang. Combination of Spectral and Textural Informations of Hyperspectral Imaging for Predictions of Soluble Protein and GSH Contents in Mutton[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 176-183. |
|
|
|
|