|
|
|
|
|
|
Research Progress of Pesticide Residue Detection Based on Fluorescence Spectrum Analysis |
ZHANG Ya-li1, 2, YAN Kang-ting1, 2, WANG Lin-lin2, 3, CHEN Peng-chao2, 3, HAN Yi-fang2, 3, LAN Yu-bin2, 3* |
1. College of Engineering, South China Agricultural University, Guangzhou 510642, China
2. National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology, Guangzhou 510642, China
3. College of Electronic Engineering,College of Artificial Intelligence, South China Agricultural University, Guangzhou 510642, China |
|
|
Abstract The application of many pesticides in agricultural production has increased the output of agricultural products. However, the excessive use of pesticides also threatens the food safety of agricultural products in China. Therefore, rapid and effective detection of pesticide residues in agricultural products has become an urgent requirement in the environment of agricultural production. Fluorescence spectrum analysis technology has presented outstanding high sensitivity and favorable time scale, and good resolving power for multi-component pesticide residue detection. Compared with pesticide residue detection methods such as gas chromatography, liquid chromatography and gas-mass spectrometry, fluorescence spectrum analysis technology has advantages of simple pretreatment and fast detection speed. Therefore, fluorescence spectroscopy detection technology has been well utilized in the complex pesticide residue detection environment. This article mainly introduces the rapid detection method of pesticide residues based on fluorescence spectrum analysis technology and summarizes the application of traditional fluorescence spectrum analysis methods in pesticide residue detection, as well as the combination of synchronization, derivative method, three-dimensional fluorescence spectroscopy, neural network, biosensor, metal nanomaterials. Finally, the limitations and challenges of pesticide residue detection based on fluorescence spectroscopy were analyzed. The wider application of fluorescence spectrum analysis technology in pesticide residue detection needs to be realized through the continuous development of fluorescence detection instruments towards integration and modularization, so that the detection is faster and more efficient.
|
Received: 2020-11-30
Accepted: 2021-04-08
|
|
Corresponding Authors:
LAN Yu-bin
E-mail: ylan@scau.edu.cn
|
|
[1] Carvalho F P. Food and Energy Security, 2017, 6(2): 48.
[2] JIANG Guan-xin, SHEN Guo-qing, TANG Wen-jia(姜官鑫,沈国清,唐雯佳). Science and Technology of Food Industry(食品工业科技),2011,(6):346.
[3] ZHANG Wen, ZHU Ren-yuan, CHEN Ting, et al(张 文,朱仁愿,陈 婷, 等). Food Industry Technology(食品工业科技), 2021, (11): 356.
[4] BAN Si-fan,LI Chun-mei,HE Qing-hua, et al(班思凡,李春梅,贺青华 , 等). Food Industry Technology(食品工业科技), 2020, 41(3): 212.
[5] PANG Guo-fang, PANG Xiao-ping, REN Fu, et al(庞国芳,庞小平,任 福, 等). Bulletin of the Chinese Academy of Sciences(中国科学院院刊), 2018, 33(1): 94.
[6] LI Tong-bin,LI Hong, SUN Feng-shou, et al(李同宾,李 红, 孙丰收,等). Chinese Journal of Pesticide Science(农药学学报), 2021, (1): 154.
[7] KANG Xia-li,ZHAO Qi-yang,ZUO Wei, et al(康霞丽,赵其阳,左 巍, 等). Food and Fermentation Industry(食品与发酵工业), 2021, (6): 121.
[8] GENG Zhao,LI Xiao-hong,GOU Yan, et al(耿 昭,李小红,苟 琰, 等). Chinese Traditional and Herbal Drugs(中草药), 2020, 51(20): 5337.
[9] LI Xiao-ting, WANG Ji-hua, ZHU Da-zhou, et al(李晓婷,王纪华,朱大洲, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2011, 27(S2): 363.
[10] Nsibande S A, Forbes P B C. Analytica Chimica Acta, 2016, 945: 9.
[11] Boroduleva A Y, Manclús J J, Montoya Á, et al. Analytical and Bioanalytical Chemistry, 2018, 410(26): 6923.
[12] Yao Y, Liu Y, Zhang H, et al. Methods and Applications in Fluorescence, 2019, 7(3): 35006.
[13] Betemps D L, Fachinello J C, Galarca S P, et al. J. Sci. Food Agric., 2012, 92(9): 1855.
[14] GE Xue-feng,WU Yan-wei,ZHAO Zhi-min(葛学峰,吴彦玮,赵志敏). Chinese Journal of Luminescence(发光学报), 2017, 38(7): 973.
[15] CHEN Guo-zhen(陈国珍). Fluorescence Analysis Method(荧光分析法). Beijing: Science Press(北京: 科学出版社), 1990.
[16] LOU Zhi-zai, HUANG Shi-hua(娄志再,黄仕华). Acta Laser Biology Sinica(激光生物学报), 2008, 17(6): 807.
[17] XUE Long, LI Jing, LIU Mu-hua, et al(薛 龙,黎 静,刘木华, 等). Acta Agriculturae Universities Jiangxiensis(江西农业大学学报), 2011, 33(2): 394.
[18] SUN Jun, ZHOU Xin, MAO Han-ping, et al(孙 俊,周 鑫,毛罕平, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2016, 32(19): 302.
[19] WANG Xiao-yan, CHEN Ren-wen(王晓燕,陈仁文). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(3): 794.
[20] CHEN Xiao-ming, WANG Cheng-long, BO Rui(陈晓明,王程龙,薄 瑞). Pesticide Science and Administration(农药科学与管理), 2016, 37(2): 4.
[21] GU Yan,WU Jin-cai,WANG Peng, et al(顾 艳,吴进才,王 鹏, 等). Chinese Journal of Rice Science(中国水稻科学), 2008,(1): 107.
[22] ZHU Yan-wu, CHEN Yan, YAO Chang-zhong, et al(朱燕舞,陈 燕,姚昌中, 等). Physical Testing and Chemical Analysis (Chemical Analysis)(理化检验(化学分册)), 2013, 49(1): 1.
[23] WANG Yu-tian, CUI Li-chao, WANG Dong-sheng, et al(王玉田,崔立超,王冬生, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2006,26(11): 2085.
[24] El-ghobashy M R, Yehia A M, Helmy A H, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 188: 619.
[25] CAI Shi-yan, YOU Wen-wei, LI Yao-qun(蔡世炎,游文玮,李耀群). Journal of Instrumental Analysis(分析测试学报), 2007,(1): 117.
[26] Xu J, Liu X, Wang Y. Food Chemistry, 2016, 212: 72.
[27] WANG Shu-tao, LI Ming-shan, WANG Yu-tian, et al(王书涛,李明珊,王玉田, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(2): 494.
[28] BAI Xiao-mei, LI Yue-zhao, YAO Zhi-peng, et al(白小梅,李悦昭,姚志鹏, 等). Environmental Science and Technology(环境科学与技术), 2020, 43(1): 172.
[29] Kang M, Cha E, Kang E, et al. Biomedical Signal Processing and Control, 2020, 58: 101846.
[30] Suárez-Araujo C P, García Báez P, Sánchez Rodríguez Á, et al. Environmental Science and Pollution Research, 2016, 23(24): 24547.
[31] Itakura K, Saito Y, Suzuki T, et al. Horticulturae, 2019, 5(1): 2.
[32] WANG Lei, QIAO Xiao-yan, ZHANG Shu, et al(王 雷,乔晓艳,张 姝, 等). Journal of Applied Optics(应用光学), 2010, 31(3): 442.
[33] WANG Shu-tao, YUAN Yuan-yuan, WANG Yu-tian, et al(王书涛,苑媛媛,王玉田, 等). Chinese Journal of Luminescence(发光学报), 2016, 37(10): 1267.
[34] QIAN Lei,LIU Yan-feng,LI Jiang-hua, et al(钱 蕾,刘延峰,李江华, 等). Food and Fermentation Industries(食品与发酵工业), 2020, (5): 1.
[35] YUAN Min,QIAN Shi-quan,CAO Hui, et al(袁 敏,钱世权,曹 慧, 等). Chinese Journal of Analytical Chemistry(分析化学), 2020, (12): 1701.
[36] Wu X, Wang P, Hou S, et al. Talanta, 2019, 198: 8.
[37] LI Feng-qiu,PAN Hong-cheng,YUAN Ya-li(李凤球,潘宏程,袁亚利). Cinese Journal of Analysis Laboratory(分析试验室), 2018, 37(4): 488.
[38] Zhang C, Wang L, Tu Z, et al. Biosensors and Bioelectronics, 2014, 55: 216.
[39] Mulchandani A, Chen W, Mulchandani P, et al. Biosensors and Bioelectronics, 2001, 16(4): 225.
[40] Huang N, Qin Y, Li M, et al. Analyst, 2019, 144(10): 3436.
[41] Sun X, Liu B, Xia K. Luminescence, 2011, 26(6): 616.
[42] Chang M M F, Ginjom I R, Ng S M. Sensors and Actuators B: Chemical, 2017, 242: 1050.
[43] TAN Hong-xia,MA Liang,GUO Ting, et al(谭红霞,马 良,郭 婷, 等). Food and Fermentation Industries(食品与发酵工业), 2019, 45(2): 240.
[44] Long Q, Li H, Zhang Y, et al. Biosensors & Bioelectronics, 2015, 68: 168.
[45] Luo Q, Lai J, Qiu P, et al. Sensors and Actuators B: Chemical, 2018, 263: 517.
[46] Hsu C, Lin Z, Chan T, et al. Food Chemistry, 2017, 224: 353.
[47] Li Z, Wang Y, Ni Y, et al. Sensors and Actuators B: Chemical, 2014, 193: 205.
[48] Lang Q, Han L, Hou C, et al. Talanta, 2016, 156-157: 34.
[49] Lozano V A, Escandar G M. Analytical Methods, 2016, 8(40): 7396.
[50] Bakhoum J P, Mbaye O M A, Diaw P A, et al. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy, 2019, 214: 285. |
[1] |
ZHU Xiang1, 2*, YUAN Chao-sheng1, CHENG Xue-rui1, LI Tao1, ZHOU Song1, ZHANG Xin1, DONG Xing-bang1, LIANG Yong-fu2, WANG Zheng2. Study on Performances of Transmitting Pressure and Measuring Pressure of [C4mim][BF4] by Using Spectroscopic Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1674-1678. |
[2] |
WANG Yi-ya1, WANG Yi-min1*, GAO Xin-hua2. The Evaluation of Literature and Its Metrological Statistics of X-Ray Fluorescence Spectrometry Analysis in China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1329-1338. |
[3] |
YAN Peng-cheng1, 2, ZHANG Chao-yin2*, SUN Quan-sheng2, SHANG Song-hang2, YIN Ni-ni1, ZHANG Xiao-fei2. LIF Technology and ELM Algorithm Power Transformer Fault Diagnosis Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1459-1464. |
[4] |
TAN Yang1, WU Xiao-hong2, 3*, WU Bin4, SHEN Yan-jun1, LIU Jin-mao1. Qualitative Analysis of Pesticide Residues on Chinese Cabbage Based on GK Improved Possibilistic C-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1465-1470. |
[5] |
ZHANG Yu-yang, CHEN Mei-hua*, YE Shuang, ZHENG Jin-yu. Research of Geographical Origin of Sapphire Based on Three-Dimensional Fluorescence Spectroscopy: A Case Study in Sri Lanka and Laos Sapphires[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1508-1513. |
[6] |
JIANG Xiao-yu1, 2, LI Fu-sheng2*, WANG Qing-ya1, 2, LUO Jie3, HAO Jun1, 2, XU Mu-qiang1, 2. Determination of Lead and Arsenic in Soil Samples by X Fluorescence Spectrum Combined With CARS Variables Screening Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1535-1540. |
[7] |
ZHANG Rui1, 2, 3, TANG Xin-yi1, 2, ZHU Wen-qing1, 2, 3. Research on Shortwave Infrared Multispectral Fluorescence Imaging of Mouse Vein[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1109-1116. |
[8] |
NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, YUE Yuan-bo2, HU Xue-qiang2, CHEN Yu2, LI Xiao-jia1, 2*. The Detection of Mercury in Solutions After Thermal Desorption-
Enrichment by Energy Dispersive X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1117-1121. |
[9] |
ZHAO Yue2, MA Feng-xiang2, WANG An-jing1*, LI Da-cheng1, SONG Yu-mei2, WU Jun1, CUI Fang-xiao1, LI Yang-yu1, CAO Zhi-cheng1. Research on Electric Breakdown Fault Diagnosis Model of Transformer Insulated Oil Based on Fluorescent Double-Color Ratio[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1134-1138. |
[10] |
CUI Ming-fang1, ZHU Jian-hua2*, HU Rui1, CHEN Shang-qian3. Research on the Chemical Composition and Process Feature of Ancient Porcelain Produced in Dongmendu Kiln[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 726-731. |
[11] |
WANG Ai-chen1, 4, GAO Bin-jie1, ZHAO Chun-jiang1, 2, XU Yi-fei3, 4, WANG Miao-lin1, YAN Shu-gang1, LI Lin1, WEI Xin-hua1*. Detecting Green Plants Based on Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 788-794. |
[12] |
LI Ying-ying1, ZHANG Zhi-qing1*, WU Xiao-hong2, Andy Hsitien Shen1*. Photoluminescence in Indonesian Fossil Resins[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 814-820. |
[13] |
YANG Xin1, 2, WU Zhi-hang3, YE Yin1, 2*, CHEN Xiao-fang1, 2, YUAN Zi-ran1, 2, WANG Jing1, 2. Parallel Factor Analysis of Fluorescence Excitation Emission Matrix Spectroscopy of DOM in Waters of Agricultural Watershed of Dianbu River[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 978-983. |
[14] |
HUANG Yu-ying1, 2, 3, ZHONG Xin-yu2, 3. Progress of Synchrotron Radiation X-Ray Fluorescence Spectrometry in China and Overseas[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 333-340. |
[15] |
YANG Jiong1, 2, QIU Zhi-li1, 4*, SUN Bo3, GU Xian-zi5, ZHANG Yue-feng1, GAO Ming-kui3, BAI Dong-zhou1, CHEN Ming-jia1. Nondestructive Testing and Origin Traceability of Serpentine Jade From Dawenkou Culture Based on p-FTIR and p-XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 446-453. |
|
|
|
|