|
|
|
|
|
|
Synthesis and Structural Characterizations of Ternary Iron(Ⅱ) Mixed Ligand Complex: Low Cost Materialsas a Precursor for Preparation of Nanometric Fe2O3 Oxide |
Khaled Althubeiti |
Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia |
|
|
Abstract The reaction of the ligands, ethylenediaminetetraacetic acid terasodium salt (Na4EDTA) and N—N heterocyclic diamines like2,2’-bipyridine (bipy) with iron(Ⅱ) sulfate with 1∶2∶2 stoichiometric ratios form the mononuclear ternary complex of formulae, [Fe2(EDTA)(bipy)2] at pH~7. The FTIR and Raman laser spectra of the iron(Ⅱ) complex show that 2,2’-bipyridine is present asa bidentate ligand and the ethylenediaminetetraacetic acid terasodium salt as monodentate carboxylate anion. The electronic spectra and magnetic moments data suggest the six coordination number. It has two iron(Ⅱ) centers in octahedral environments, which are interlinked by carboxylato-O atoms of ethylenediaminetetraacetate and by nitrogen atoms of the two 2,2-bipyridine ligands in a chelating mode. Thermal analysis study show thatiron(Ⅱ) complex containing EDTA and 2,2’-bipyridine on its thermalde composition form the corresponding Fe2O3 oxide in nano size at the temperature range ~475 ℃. The iron(Ⅱ) complex was performed as a convenient low cost precursor for the preparation of Fe2O3 nanoparticles by the the thermal decomposition method. The iron(Ⅲ) oxide composition has been discussedusing FTIR, X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX).
|
Received: 2020-10-09
Accepted: 2021-01-03
|
|
|
[1] Villanueva A, Cañete M. Nanotechnology, 2009, 20: 115103.
[2] Tomitaka A, Hirukawa A, Yamada T. J. Magn. Magn. Mater., 2009, 321: 1482.
[3] Morais P C, Garg V K, Oliveira A C. Hyperfine Interact., 2009, 190: 87.
[4] Varshney M, Li Y. Biosens. Bioelectron, 2007, 22: 240824.
[5] Perez J M, Josephson L, Loughlin T O, et al. Nat. Biotechnol., 2002, 20: 816.
[6] Yoon T J, Lee W, Oh Y S, et al. New J. Chem., 2003, 27: 227.
[7] Doyle P S, Bibette J, Bancaud A. J. Viovy, Science, 2002, 295: 2237.
[8] Cao D, He P, Hu N. Analyst, 2003, 128: 1268.
[9] Wen X G, Wang S H, Ding Y, et al. J. Phys. Chem. B, 2005, 109: 215.
[10] Feldmann C. Adv. Mater., 2001, 13: 1301.
[11] Bell A T. Science, 2003, 299: 1688.
[12] Yarahmadi S S, Tahir A A, Vaidhyanathan B, et al Mater. Lett., 2009, 63: 523.
[13] Neri G, Bonavita A, Galvagno S, et al. Sens Acturators B, 2002, 82: 40.
[14] Jing Z H, Wu S H. Mater. Chem. Phys., 2005, 92: 600.
[15] Zhang Z H, Hossain M F, Takahashi T. Appl. Catal. B Environ., 2010, 95: 423.
[16] Chin A B, Yaacob I I. J. Mater. Process Tech., 2007, 191: 235.
[17] Sonavane S U, Gawande M B, Deshpande S S, et al. Catal. Commun., 2007, 8: 1803.
[18] Chaianansutcharit S, Mekasuwandumrong O, Praserthdam P. Ceram. Int., 2007, 33: 697.
[19] Wang B, Wei Q, Qu S. Int. J. Electrochem. Sci., 2013, 8: 3786.
[20] Morales J, Tirado J L, Valera C. J. Am. Ceram. Soc., 1989, 72: 1244.
[21] El-Habeeb A A, Refat M S. J. Mol. Struct., 2019, 1175: 65.
[22] Soliman A A, Amin M A, El-Sherif A A, et al. Dyes Pigments, 2013, 99: 1056.
[23] Ray U, Banerjee D, Liou J C, et al. Inorg. Chim. Acta, 2005, 358: 1019.
[24] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 4th ed. Wiley, New York, 1986.
[25] Shilt A A, Taylor R C. J. Inorg. Nucl. Chem., 1959, 9: 211.
[26] Inskeep R G. J. Inorg. Nucl. Chem., 1962, 24: 763.
[27] Sinha S P. Spectrochim. Acta, 1964, 20: 879.
[28] Ferraro J R, Walker W R. Inorg. Chem., 1965, 4(10): 1382.
[29] Cullity B D, Stock S R. Elements of X-ray Diffraction, 3rd ed. New York: Prentice Hall, 2001. 389. |
[1] |
WANG Gan-lin1, LIU Qian1, LI Ding-ming1, YANG Su-liang1*, TIAN Guo-xin1, 2*. Quantitative Analysis of NO-3,SO2-4,ClO-4 With Water as Internal Standard by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1855-1861. |
[2] |
TAO Wan-cheng1, 2, ZHANG Ying1, 2, XIE Zi-xuan1, 2, WANG Xin-sheng1, 2, DONG Yi1, 2, ZHANG Ming-zheng 1, 2, SU Wei1, 2*, LI Jia-yu1, 2, XUAN Fu1, 2. Intelligent Recognition of Corn Residue Cover Area by Time-Series
Sentinel-2A Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1948-1955. |
[3] |
MA Fang1, HUANG An-min2, ZHANG Qiu-hui1*. Discrimination of Four Black Heartwoods Using FTIR Spectroscopy and
Clustering Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1915-1921. |
[4] |
FAN Chun-hui1, 2, ZHENG Jin-huan3, LIU Hong-xin1. FTIR, 2D-IR and XPS Analyses on the Mechanism of Protoplast Derived From Calendula Officinalis in Response to Lead and Cadmium in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1420-1425. |
[5] |
LIU Jiang-qing1, YU Chang-hui2, 3, GUO Yuan2, 3, LEI Sheng-bin1*, ZHANG Zhen2, 3*. Interaction Between Dipalmityl Phosphatidylcholine and Vitamin B2
Studied by Second Harmonic Spectroscopy and Brewster Angle
Microscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1484-1489. |
[6] |
SHI Pei1, JIN Zhi-wei1, WANG Fen1*, LUO Hong-jie1, 2, ZHU Jian-feng1, YE Guo-zhen3, ZHANG Yu-feng4. Influence Mechanism of the Iron-Rich Raw Material on the Iron-Based Crystalline Glazes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1628-1633. |
[7] |
OUYANG Zhou-xuan, MA Ying-jie, LI Dou-dou, LIU Yi. The Research of Polarized Energy Dispersive X-Ray Fluorescence for Measurement Trace Cadmium by Geant4 Simulation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1064-1069. |
[8] |
DU Bao-lu, LI Meng, GUO Jin-jia*, ZHANG Zhi-hao, YE Wang-quan, ZHENG Rong-er. The Experimental Research on In-Situ Detection for Dissolved CO2 in
Seawater Based on Tunable Diode Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1264-1269. |
[9] |
YANG Xu, LU Xue-he, SHI Jing-ming, LI Jing, JU Wei-min*. Inversion of Rice Leaf Chlorophyll Content Based on Sentinel-2 Satellite Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 866-872. |
[10] |
WANG Chun-juan1, 2, ZHOU Bin1, 2*, ZHENG Yao-yao3, YU Zhi-feng1, 2. Navigation Observation of Reflectance Spectrum of Water Surface in Inland Rivers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 878-883. |
[11] |
LI Zhao, WU Kun-yao, WANG Ya-nan, CAO Jing, WANG Yong-feng, LU Yuan-yuan. Synthesis and Luminescence Properties of Yellow-Emitting Phosphor Y2.93Al5O12∶0.07Ce3+ Under Blue Light Excitation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 381-385. |
[12] |
WANG Yuan1, ZHANG Zhen2*, GUO Yuan2, 3. A Simplified Method of Microscopic Polarizability Tensor Differential of Hyper-Raman Spectroscopy Based on Experimental Correction Bond Additivity Model-C2v Symmetry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 124-129. |
[13] |
HE Xiong-fei1, 2, HUANG Wei3, TANG Gang3, ZHANG Hao3*. Mechanism Investigation of Cement-Based Permeable Crystalline Waterproof Material Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3909-3914. |
[14] |
LI Yan-li1, WU Yue1, ZHANG Xin-yue1, 2, KONG Xiang-dong1, 2*, GAO Zhao-shun1, 2, HAN Li1, 2. Study on Raman Spectra of MgB2 Superconducting Film at Different Temperatures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3451-3455. |
[15] |
LIU Zheng-jiang1, ZHANG Qian-cheng2, MA Hui-yan2*, LIU Ju-ming2. Spectral Characteristics of Hangjin2# Clay and Its Mechanism in Heterogeneous Fenton Reaction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3512-3517. |
|
|
|
|