|
|
|
|
|
|
Synthesis, Structural, Spectroscopic Characterization and Biological Properties of the Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ), and Mn(Ⅱ) Complexes With the Widely Used Herbicide 2,4-Dichlorophenoxyacetic Acid |
Lamia A. Albedair |
Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia |
|
|
Abstract 2,4-Dichlorophenoxyacetic acid (2,4-D) is a board-leaf selective herbicide and globally used in agricultural activities. Complexation mode, spectroscopic investigations and biological properties of complexes formed between 2,4-D (C6H3Cl2OCH2·COOH; HL) with Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ), and Mn(Ⅱ) metal ions were investigated. To characterize the binding mode between 2,4-D and the metal ions, many physicochemical approaches were employed. The complexes obtained are characterized quantitatively and qualitatively by using micro elemental analysis, FTIR spectroscopy, UV-Vis spectroscopy, 1H-NMR, and magnetic susceptibility measurements. Results of these approaches suggested that the gross formula of the complexes obtained with the metal ions were [ZnL2](2H2O (1), [CuL2(H2O)2] (2), [NiL2](3H2O (3), [CoL2(H2O)2] (4), and [MnL2(H2O)2] (5). In all complexes, two L- anion were coordinated the metal ion by their bidentate carboxylate groups. From the spectral study, all the complexes obtained as monomeric structure and the metals center moieties are six-coordinated with octahedral geometry except Ni(Ⅱ) and Zn(Ⅱ) complexes which existed as a tetrahedral and square pyramidal geometry respectively. The complexes were screened in vitro against several microbes (fungi and bacteria) using Kirby-Bauer disc diffusion method, and data has demonstrated that complex 3 showed excellent antifungal activity.
|
Received: 2020-06-07
Accepted: 2020-09-21
|
|
|
[1] Margni M, Rossier D, Crettaz P, et al. Agric. Ecosyst. Environ., 2002, 93: 379.
[2] Li N, Chen J, Shi Y. J. Chromatogr. A, 2016, 1441: 24.
[3] Li G, Lu S, Wu H, et al. J. Sep. Sci., 2015, 38(2): 187.
[4] Wang L, Wang M, Yan H, et al. J. Chromatogr. A, 2014, 1368: 37.
[5] Si T, Liu L, Liang X, et al. J. Sep. Sci., 2019, 42(12): 2148.
[6] Duo H, Wang Y, Wang L, et al. J. Sep. Sci., 2018, 41(22): 4149.
[7] Li W, Li Y, Zhang D, et al. J. Hazard. Mater., 2020, 381: 121209.
[8] Yang Z, Shi X, Dai M, et al. Chemosphere, 2018, 201: 859.
[9] Wafa T, Amel N, Issam C, et al. Pestic. Biochem. Physiol., 2011, 99(3): 256.
[10] Xu X, Cai J, Zhou M, et al. J. Hazard. Mater., 2020, 382: 121096.
[11] Lam S, Sin J, Abdullah A Z, et al. J. Colloid Interf. Sci., 2015, 450: 34.
[12] Cai J, Zhou M, Pan Y, et al. Sep. Purif. Technol., 2020, 230: 115867.
[13] Garabrant D H, Philbert M A. Crit. Rev. Toxicol., 2002, 32: 233.
[14] Tayyab S, Francis J Z, Kabir M Z, et al. Spectrochim. Acta A, 2019, 207: 284.
[15] Jaafarzadeh N, Ghanbari F, Ahmadi M. Chem. Eng. J., 2017, 320: 436.
[16] Ding M, Chen W, Xu H, et al. Chem. Eng. J., 2019, 378: 122177.
[17] Nguyen T T K, Nguyen T N, Anquetin G, et al. Bioelectron., 2018, 113: 32.
[18] Burns C J, Swaen G M H. Crit. Rev. Toxicol., 2012, 42(9): 768.
[19] Stebbins-Boaz B, Fortner K, Frazier J, et al. Mol. Reprod. Dev., 2004, 67(2): 233.
[20] Cakir O, Bakhshpour M, Yilmaz F, et al. Mater. Sci. Eng. C, 2019, 102: 483.
[21] Yang Z, Xu X, Dai M, et al. J. Hazard. Mater., 2018, 353: 490.
[22] Carver Z A, Han A A, Timchalk C, et al. Toxicology, 2018, 410: 171.
[23] Leon-Fernandez L F, Villaseñor J, Rodriguez L, et al. J. Electroanal. Chem., 2019, 854: 113564.
[24] Garba Z N, Zhou W, Lawan I,et al. J. Environ. Manag., 2019, 241: 59.
[25] Carboneras B, Villaseñor J, Fernandez-Morales F J. Technol., 2017, 243 : 1044.
[26] Limaee N Y, Rouhani S, Olya M E, et al. Polymer, 2019, 177: 73.
[27] Castillejos E, Esteban-Arranz A, Bachiller-Baeza B, et al. Catalysis Today, In Press(2019), https://doi.org/10.1016/j.cattod.2019.09.007.
[28] Naz N, Sirajuddin M, Haider A, et al. J. Mol. Struct., 2019, 1179: 662.
[29] Drzewiecka-Antonik A, Ferenc W, Wolska A, et al. Chem. Phys. Lett., 2017, 667: 192.
[30] Kobyłecka J, Turek A, Sieroń L. Thermochim. Acta, 2009, 482: 49.
[31] Liu J, Zhu B, Tian Y, et al. Acta Cryst., 2006, E62: m2030.
[32] Hao X, Gu C, Song W, et al. Acta Cryst., 2006, E62: m2618.
[33] Gu C, Hao X, Guan S, et al. Acta Cryst., 2006, C62: m516.
[34] Huang P, Wang J. Acta Cryst., 2007, E63: m645.
[35] Zhou Y H, Wang Z Y. Bull. Korean Chem. Soc., 2015, 36(2): 618.
[36] Pan J, Ju J, Wei Q, et al. Z. Anorg. Allg. Chem.,2014,640(8-9):1745.
[37] Bauer A W, Kirby W M, Sherris C, et al. Am. J. Clin. Pathol., 1966, 45: 493.
[38] Biemer J J. Ann. Clin. Lab. Sci., 1973, 3: 135.
[39] Serrano M C, Ramírez M, Morilla D, et al. J. Antimicrob. Chemo-Ther., 2004, 53: 739.
[40] Badawi H M. Spectrochim. Acta A, 2010, 77: 24.
[41] Deacon G B, Phillips R J. Coord. Chem. Rev., 1980, 33(3): 227.
[42] Nakamoto K. Infrared Spectra of Inorganic and Coordination Compounds, Wiley Interscience, John Wiley & Sons, New York, NY, USA, 2nd edition, 1970.
[43] Arellano U, Wang J A, Asomoza M, et al. Mater. Chem. Phys., 2018, 214: 247.
[44] Allan J R, Baird N D, Kassyk A L. J. Therm. Anal., 1979, 16(1): 79.
[45] Sivakolunthu S, Sivasubramanian S. J. Indian Chem. Soc., 1997, 74: 566.
[46] Lever A B P. Coord. Chem. Rev.,1968,3(2):119.
[47] Lever A B P. Inorganic Electronic Spectroscopy. 2nd ed. Elsevier, Amsterdam, 1997.
[48] Cotton F A, Wilkinson G, Murillo C A, et al. Advanced Inorganic Chemistry. 6th ed. Wiley, New York, 1999.
[49] Chandra S, Pandeya K B. Transit. Metal Chem.,1981,6(2):110. |
[1] |
WANG Gan-lin1, LIU Qian1, LI Ding-ming1, YANG Su-liang1*, TIAN Guo-xin1, 2*. Quantitative Analysis of NO-3,SO2-4,ClO-4 With Water as Internal Standard by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1855-1861. |
[2] |
TAO Wan-cheng1, 2, ZHANG Ying1, 2, XIE Zi-xuan1, 2, WANG Xin-sheng1, 2, DONG Yi1, 2, ZHANG Ming-zheng 1, 2, SU Wei1, 2*, LI Jia-yu1, 2, XUAN Fu1, 2. Intelligent Recognition of Corn Residue Cover Area by Time-Series
Sentinel-2A Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1948-1955. |
[3] |
MA Fang1, HUANG An-min2, ZHANG Qiu-hui1*. Discrimination of Four Black Heartwoods Using FTIR Spectroscopy and
Clustering Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1915-1921. |
[4] |
FAN Chun-hui1, 2, ZHENG Jin-huan3, LIU Hong-xin1. FTIR, 2D-IR and XPS Analyses on the Mechanism of Protoplast Derived From Calendula Officinalis in Response to Lead and Cadmium in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1420-1425. |
[5] |
LIU Jiang-qing1, YU Chang-hui2, 3, GUO Yuan2, 3, LEI Sheng-bin1*, ZHANG Zhen2, 3*. Interaction Between Dipalmityl Phosphatidylcholine and Vitamin B2
Studied by Second Harmonic Spectroscopy and Brewster Angle
Microscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1484-1489. |
[6] |
SHI Pei1, JIN Zhi-wei1, WANG Fen1*, LUO Hong-jie1, 2, ZHU Jian-feng1, YE Guo-zhen3, ZHANG Yu-feng4. Influence Mechanism of the Iron-Rich Raw Material on the Iron-Based Crystalline Glazes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1628-1633. |
[7] |
DU Bao-lu, LI Meng, GUO Jin-jia*, ZHANG Zhi-hao, YE Wang-quan, ZHENG Rong-er. The Experimental Research on In-Situ Detection for Dissolved CO2 in
Seawater Based on Tunable Diode Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1264-1269. |
[8] |
ZHANG Dian-kai1, LI Yan-hong1*, ZI Chang-yu1, ZHANG Yuan-qin1, YANG Rong1, TIAN Guo-cai2, ZHAO Wen-bo1. Molecular Structure and Molecular Simulation of Eshan Lignite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1293-1298. |
[9] |
YANG Xu, LU Xue-he, SHI Jing-ming, LI Jing, JU Wei-min*. Inversion of Rice Leaf Chlorophyll Content Based on Sentinel-2 Satellite Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 866-872. |
[10] |
WANG Chun-juan1, 2, ZHOU Bin1, 2*, ZHENG Yao-yao3, YU Zhi-feng1, 2. Navigation Observation of Reflectance Spectrum of Water Surface in Inland Rivers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 878-883. |
[11] |
WANG Fang-fang1, ZHANG Xiao-dong1, 2*, PING Xiao-duo1, ZHANG Shuo1, LIU Xiao1, 2. Effect of Acidification Pretreatment on the Composition and Structure of Soluble Organic Matter in Coking Coal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 896-903. |
[12] |
HU Chao-shuai1, XU Yun-liang1, CHU Hong-yu1, CHENG Jun-xia1, GAO Li-juan1, ZHU Ya-ming1, 2*, ZHAO Xue-fei1, 2*. FTIR Analysis of the Correlation Between the Pyrolysis Characteristics and Molecular Structure of Ultrasonic Extraction Derived From Mid-Temperature Pitch[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 889-895. |
[13] |
LI Zhao, WU Kun-yao, WANG Ya-nan, CAO Jing, WANG Yong-feng, LU Yuan-yuan. Synthesis and Luminescence Properties of Yellow-Emitting Phosphor Y2.93Al5O12∶0.07Ce3+ Under Blue Light Excitation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 381-385. |
[14] |
YANG Jiong1, 2, QIU Zhi-li1, 4*, SUN Bo3, GU Xian-zi5, ZHANG Yue-feng1, GAO Ming-kui3, BAI Dong-zhou1, CHEN Ming-jia1. Nondestructive Testing and Origin Traceability of Serpentine Jade From Dawenkou Culture Based on p-FTIR and p-XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 446-453. |
[15] |
WANG Yuan1, ZHANG Zhen2*, GUO Yuan2, 3. A Simplified Method of Microscopic Polarizability Tensor Differential of Hyper-Raman Spectroscopy Based on Experimental Correction Bond Additivity Model-C2v Symmetry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 124-129. |
|
|
|
|