|
|
|
|
|
|
Spectroscopic Investigations for the Six New Synthesized Complexes of Fluoroquinolones and Quinolones Drugs With Nickel(Ⅱ) Metal Ion: Infrared and Electronic Spectroscopy |
Samar O. Aljazzar |
Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia |
|
|
Abstract Quinolone has a broad spectrum of synthetic antibiotics with a strong therapeutic effect and quinolone is a term used for chemical treatments used to treat a powerful bacteria. Quinolones are divided into 4 generations according to the bacterial spectrum, the majority of quinolones used clinically belong to the sub fluoroquinolones group, which has a fluorine atom linked to the central ring system, usually on its carbon atom 6 or 7. Herein in this article, six new nickel(Ⅱ) complexes (Ⅰ—Ⅵ) have been synthesized in aqueous alkaline media at pH ranged 8-9, the chemical reactions take place between levofloxacin (HLEV), lomefloxacin (HLOM), nalidixic acid (HNLA), oxolonic acid (HOXO), pipemidic acid (HPIP), and pefloxacin mesylate (HPEF) with nickel(Ⅱ) nitrate hexahydrate. The microanalytical (percentage of carbon, hydrogen and nitrogen), molar conductance (Λm), Infrared (FTIR) spectra, electronic (UV-Vis) spectra, and effective magnetic moment instrumentals were used to identify the suggested structures and their surface morphology. According the analytical and spectroscopic analyses, the stoichiometry between nickel(Ⅱ) metal ion and drug ligands was found to be 1∶2 with general formula as [Ni(L)2(H2O)2]·xH2O (L=LEV (Ⅰ), LOM (Ⅱ), NAL (Ⅲ), OXO (Ⅳ), PIP (V), and PEF (Ⅵ); x=2 or 4). By the comparison between FTIR spectra of quinolone drugs and their complexes, it can be deduced that all the drug ligands act as a bidentate chelates through oxygen atoms of pyridine ring and carboxylate group. The electronic configuration of all synthesized nickel(Ⅱ) complexes were octahedral geometry which confirmed based on the values of magnetic susceptibility and the electronic transition bands.
|
Received: 2020-05-10
Accepted: 2020-09-02
|
|
|
[1] Emami S, Shahrokhirad N, Foroumadi A, et al. Med. Chem. Res., 2013, 22: 5940.
[2] Von Rosenstiel N, Adam D. Drugs, 1994, 47(6): 872.
[3] Sultana N, Arayne M S, Rizvi S B S, et al. Med. Chem. Res., 2013, 22: 1371.
[4] Tarushi A, Polatoglou E, Kljun J, et al. Dalton Trans., 2011, 40: 9461.
[5] Vieira L M M, de-Almeida M V, Lourenço M C S, et al. Eur. J. Med. Chem.,2009, 44: 4107.
[6] Patel M N, Gandhi D S, Parmar P A. Inorg. Chem. Commun., 2012, 15: 248.
[7] Gouvea L R, Garcia L S, Lachter D R, et al. Eur. J. Med. Chem.,2012,55:67.
[8] Siji V L, Sudarsana Kumar M R, Suma S, et al. Spectrochim. Acta A, 2010, 76: 22.
[9] Sadeek S A, El-Shwiniy W H. J. Mol. Struct., 2010, 98: 130.
[10] Abd El-Halim H F, Mohamed G G, El-Dessouky M M I, et al. Spectrochim. Acta A, 2011,82:8.
[11] Qi W, Huang J, An Z. Acta Crystallogr., 2008, 64: m302.
[12] Zaky M, El-Sayed M Y, El-Megharbel S M, et al. Russ. J. Gen. Chem., 2013, 83(12): 1070.
[13] Al-Khodir F A I, Refat M S. J. Mol. Struct., 2015, 1094: 22.
[14] Debnath A, Mogha N K, Masram T D. Appl. Biochem. Biotechnology, 2015,175(5):2659.
[15] Behrens N B, Diaz G M, Goodgame D M L. Inorg. Chim. Acta, 1986,125(1):21.
[16] Psomas G, Tarushi A, Efthimiadou E K, et al. J. Inorg. Biochem., 2006, 100: 1764.
[17] Skyrianou K C, Perdih F, Turel I, et al. J. Inorg. Biochem., 2010,104:161.
[18] Tarushi A, Psomas G, Raptopoulou C P, et al. J. Inorg. Biochem., 2009, 103: 898.
[19] Tarushi A, Christofis P, Psomas G. Polyhedron, 2007, 26: 3963.
[20] Tarushi A, Efthimiadou E K, Christofis P, et al. Inorg. Chim. Acta,2007,360:3978.
[21] Efthimiadou E K, Sanakis Y, Katsaros N, et al. Polyhedron, 2007, 26: 1148.
[22] Efthimiadou E K, Katsaros N, Karaliota A, et al. Inorg. Chim. Acta, 2007, 360: 4093.
[23] Skrzypek D, Szymanska B, Kovala-Demertzi D, et al. J. Phys. Chem. Solids, 2006, 67: 2550.
[24] Shaikh A R, Giridhar R, Megraud F, et al. Acta Pharm., 2009,59:259.
[25] Sadeek S A, El-Shwiniy W H. J. Mol. Struct., 2010, 98: 130.
[26] Abd El-Halim H F, Mohamed G G, El-Dessouky M M I, et al. Spectrochim. Acta A, 2011, 82: 8.
[27] Qi W, Huang J, An Z. Acta Crystallogr., 2008, 64: m302.
[28] Drevenšek P, Košmrlj J, Giester G, et al. J. Inorg. Biochem., 2006, 100: 1755.
[29] Geary W J. Coord. Chem. Rev., 1971,7:81.
[30] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 4th ed., Wiley, New York, 1986.
[31] Jaffe H H, Orehin M. Theory and Application of Ultraviolet Spectroscopy, John Willey and Sons, New York, 1982; Ismail T M. J. Coord. Chem., 2005,58:141.
[32] Lever A B P. J. Chem. Edu., 1968,45:711. |
[1] |
MA Fang1, HUANG An-min2, ZHANG Qiu-hui1*. Discrimination of Four Black Heartwoods Using FTIR Spectroscopy and
Clustering Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1915-1921. |
[2] |
YANG Yan-ling1, Andy Hsitien Shen1, FAN Yu-rong2, HUANG Wei-zhi1, PEI Jing-cheng1*. UV-Vis-NIR Spectroscopic Characteristics of Vanadium-Rich
Hydrothermal Synthetic Emeralds From Russia[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1199-1203. |
[3] |
ZHANG Dian-kai1, LI Yan-hong1*, ZI Chang-yu1, ZHANG Yuan-qin1, YANG Rong1, TIAN Guo-cai2, ZHAO Wen-bo1. Molecular Structure and Molecular Simulation of Eshan Lignite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1293-1298. |
[4] |
WANG Fang-fang1, ZHANG Xiao-dong1, 2*, PING Xiao-duo1, ZHANG Shuo1, LIU Xiao1, 2. Effect of Acidification Pretreatment on the Composition and Structure of Soluble Organic Matter in Coking Coal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 896-903. |
[5] |
HU Chao-shuai1, XU Yun-liang1, CHU Hong-yu1, CHENG Jun-xia1, GAO Li-juan1, ZHU Ya-ming1, 2*, ZHAO Xue-fei1, 2*. FTIR Analysis of the Correlation Between the Pyrolysis Characteristics and Molecular Structure of Ultrasonic Extraction Derived From Mid-Temperature Pitch[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 889-895. |
[6] |
YANG Jiong1, 2, QIU Zhi-li1, 4*, SUN Bo3, GU Xian-zi5, ZHANG Yue-feng1, GAO Ming-kui3, BAI Dong-zhou1, CHEN Ming-jia1. Nondestructive Testing and Origin Traceability of Serpentine Jade From Dawenkou Culture Based on p-FTIR and p-XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 446-453. |
[7] |
HE Xiong-fei1, 2, HUANG Wei3, TANG Gang3, ZHANG Hao3*. Mechanism Investigation of Cement-Based Permeable Crystalline Waterproof Material Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3909-3914. |
[8] |
ZHOU Jing1,2, ZHANG Qing-qing1,2, JIANG Jin-guo2, NIE Qian2, BAI Zhong-chen1, 2*. Study on the Rapid Identification of Flavonoids in Chestnut Rose (Rosa Roxburghii Tratt) by FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3045-3050. |
[9] |
Samy M. El-Megharbel*,Moamen S. Refat. In First Time: Synthesis and Spectroscopic Interpretations of Manganese(Ⅱ), Nickel(Ⅱ) and Mercury(Ⅱ) Clidinium Bromide Drug Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3316-3320. |
[10] |
Samy M. El-Megharbel*, Moamen S. Refat. Preparations and Spectroscopic Studies on the Three New Strontium(Ⅱ), Barium(Ⅱ), and Lead(Ⅱ) Carbocysteine Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2975-2979. |
[11] |
YU Chun-mei, ZHANG Nan, TENG Hai-peng. Investigation of Different Structures of Coals Through FTIR and Raman Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2050-2056. |
[12] |
QU Li-guo1,2,3, LIU Jian-guo1, XU Liang1*, XU Han-yang1, JIN Ling1, DENG Ya-song1,2, SHEN Xian-chun1, SHU Sheng-quan1,2. Vehicle Exhaust Detection Method Based on Portable FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1751-1757. |
[13] |
Lamia A. Albedair. Synthesis, Structural, Spectroscopic Characterization and Biological Properties of the Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ), and Mn(Ⅱ) Complexes With the Widely Used Herbicide 2,4-Dichlorophenoxyacetic Acid[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1982-1987. |
[14] |
ZHANG Jiao1, 2, WANG Yuan-zhong1, YANG Wei-ze1, ZHANG Jin-yu1*. Data Fusion of ATR-FTIR and UV-Vis Spectra to Identify the Origin of Polygonatum Kingianum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1410-1416. |
[15] |
LI Ping1,2, WU Yi-qiang1, LÜ Jian-xiong3, YUAN Guang-ming1, ZUO Ying-feng1*. Effect of Biomimetic Respiration Method on the Impregnation Effect of Silicate Modified Chinese Fir by XPS and FTIR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1430-1435. |
|
|
|
|