|
|
|
|
|
|
A Comparative Study of the Hyperspectral Inversion Models Based on the PCA for Retrieving the Cd Content in the Soil |
GUO Fei1, 2, XU Zhen3*, MA Hong-hong1, 2, LIU Xiu-jin1, 2, YANG Zheng1, 2, TANG Shi-qi1, 2 |
1. Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
2. Research Center of Geochemical Survey and Assessment on Land Quality, China Geological Survey, Langfang 065000, China
3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China |
|
|
Abstract The soil heavy metal pollution poses a great threat to the human health, thus, it is quite important make out the contamination in the soil. There are a series of advantages in the hyperspectral remote sensing technology, such as the high spectral resolution, rapid response, non-destructive, etc., making it a well- suited in retrieving the soil’s components. In this study, the impacts of the information redundancy in the spectral and spectral transformation on the inversion of Cd content in the soil are investigated. Further, based on the hyperspectral data before and after spectral transformation, the performance comparations of hyperspectral models are carried out in this paper, as well. By so doing, the Cd contents and the corresponding lab spectrum (350~2 500 nm) of 56 soil samples are measured by the ICP-MS and ASD Fieldspec4. Then, the reciprocal and logarithm changes are performed to weaken the impacts of the light variation and soil surface roughness on the experimental results. Due to the fact that there is much redundant information in the obtained data, the Principal Component Analysis (PCA) is carried out to reduce the dimensionality of the spectral bands in the data. After this processing, only 12 principal components are selected as the input variables of the model. Regarding the hyperspectral models, the Partial Least-Squares Regression (PLSR), Support Vector Machine (SVM), Artificial Neural Network (ANN) and Random Forest (RF) are chosen to establish the relationship between the Cd content and PCA components. Finally, for evaluating the prediction capabilities of the regression models, three precision evaluation indexes are preferred to assess the accuracy of regression models in this study, they are the correlation coefficient (R2), Root Mean Squared Error (RMSE) and Residual Predictive Deviation (RPD). Analysis results show that the cumulative contribution rate of 12 principal components of the original data after processed by the PCA can be up to 99.99%. Using principal components as the inputs, all four hyperspectral models show excellent performances in predicting the Cd content in the soil. The PCA-RF, in particular, has the most accurate prediction capability regardless of whether the spectral transformation is performed or not (whose R2 before and after spectral transformation are 0.856 and 0.855, respectively, while the RPD under both conditions are 3.39). In conclusion, the PCA is used to reduce hyperspectral data’s dimensionality, this processing can effectively reduce the redundancy of hyperspectral data and guarantee the predictive capability of hyperspectral models. Also, the principal component selected by the PCA method could be excellent input variables of the hyperspectral models. Further, the hyperspectral model based on the PCA-RF shows the most excellent performance for rapid detecting the Cd element in the soil within the study area and similar regions, which could be a new supplement for the inversion of heavy metals in the soil.
|
Received: 2020-05-26
Accepted: 2020-08-31
|
|
Corresponding Authors:
XU Zhen
E-mail: xuzhen@radi.ac.cn
|
|
[1] Liao M, Xie X, Ma A, et al. Journal of Soil & Sediments, 2010, 10(5): 818.
[2] Gu Y W, Li S, Gao W, et al. Acta Ecologica Sinica, 2015, 35(13): 4445.
[3] Zhang X, Sun W, Cen Y, et al. The Science of the Total Environment, 2019, 650(PT. 1(1-834)): 321.
[4] JIANG Zhen-lan, YANG Yu-sheng, SHA Jin-ming(江振蓝, 杨玉盛, 沙晋明). Journal of Geographical(地理学报), 2017, 72(3): 533.
[5] Kemper T, Sommer S. Environmental Science & Technology, 2002, 36(12): 2742.
[6] ZHANG Fang, XIONG Hei-gang, LUAN Fu-ming, et al(张 芳, 熊黑钢, 栾福明, 等). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2011,(1): 57.
[7] LI Yuan-bo, CAO Han(李远博, 曹 菡). Computer Technology and Development(计算机技术与发展), 2016,(2): 26.
[8] WANG Shi-dong, SHI Pu-jie, ZHANG He-bing, et al(王世东, 石朴杰, 张合兵, 等). Chinese Journal of Ecology(生态学杂志), 2019, 38(1): 300.
[9] DONG Cheng-wei, RUI Xiao-ping, DENG Yu, et al(董承玮, 芮小平, 邓 羽, 等). Geography and Geo-Information Science(地理学与地理信息科学), 2014,(4): 36.
[10] Darwishe H, El Khattabi J, Chaaban F, et al. Environmental Earth Sciences, 2017, 76(19): 649.1.
[11] FANG Kuang-nan, WU Jian-bin, ZHU Jian-ping, et al(方匡南, 吴见彬, 朱建平, 等). Statistics & Information Forum(统计与信息论坛), 2011, 26(3): 32. |
[1] |
LIU Yan-de, WANG Shun. Research on Non-Destructive Testing of Navel Orange Shelf Life Imaging Based on Hyperspectral Image and Spectrum Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1792-1797. |
[2] |
CHEN Yuan-zhe1, WANG Qiao-hua1, 2*, TIAN Wen-qiang1, XU Bu-yun1, HU Jian-chao1. Nondestructive Determinations of Texture and Quality of Preserved Egg Gel by Hyperspectral Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1985-1992. |
[3] |
ZHANG Jie1, 2, XU Bo1, FENG Hai-kuan1, JING Xia2, WANG Jiao-jiao1, MING Shi-kang1, FU You-qiang3, SONG Xiao-yu1*. Monitoring Nitrogen Nutrition and Grain Protein Content of Rice Based on Ensemble Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1956-1964. |
[4] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[5] |
MIAO Shu-guang1, SHAO Dan1*, LIU Zhong-yu2, 3, FAN Qiang1, LI Su-wen1, DING En-jie2, 3. Study on Coal-Rock Identification Method Based on Terahertz
Time-Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1755-1760. |
[6] |
TIAN Xue1, CHE Qian1, YAN Wei-min1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Discrimination of Millet Varieties and Producing Areas Based on Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1841-1847. |
[7] |
ZHENG Yi1, 2, 3, WANG Yao1, 2, LIU Yan1, 2*. Study on Classification and Recognition of Mountain Meadow Vegetation Based on Seasonal Characteristics of Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1939-1947. |
[8] |
PENG Ren-miao1, 2, XU Peng-peng2, ZHAO Yi-mo2, BAO Li-jun1, LI Cheng2*. Identification of Two-Dimensional Material Nanosheets Based on Deep Neural Network and Hyperspectral Microscopy Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1965-1973. |
[9] |
JIANG Rong-chang1, 2, GU Ming-sheng2, ZHAO Qing-he1, LI Xin-ran1, SHEN Jing-xin1, 3, SU Zhong-bin1*. Identification of Pesticide Residue Types in Chinese Cabbage Based on Hyperspectral and Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1385-1392. |
[10] |
WANG Ling-ling1, 2, 3, WANG Bo1, 2, 3, XIONG Feng1, 2, 3, YANG Lu-cun1, 2, LI Jing-jing4, XIAO Yuan-ming1, 2, 3, ZHOU Guo-ying1, 2*. A Comparative Study of Inorganic Elements in Cultivativing Astragalus Membranaceus From Different Habitats[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1407-1412. |
[11] |
JING Xia1, ZHANG Jie1, 2, WANG Jiao-jiao2, MING Shi-kang2, FU You-qiang3, FENG Hai-kuan2, SONG Xiao-yu2*. Comparison of Machine Learning Algorithms for Remote Sensing
Monitoring of Rice Yields[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1620-1627. |
[12] |
JIANG Qing-hu1, LIU Feng1, YU Dong-yue2, 3, LUO Hui2, 3, LIANG Qiong3*, ZHANG Yan-jun3*. Rapid Measurement of the Pharmacological Active Constituents in Herba Epimedii Using Hyperspectral Analysis Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1445-1450. |
[13] |
TAN Yang1, WU Xiao-hong2, 3*, WU Bin4, SHEN Yan-jun1, LIU Jin-mao1. Qualitative Analysis of Pesticide Residues on Chinese Cabbage Based on GK Improved Possibilistic C-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1465-1470. |
[14] |
DAI Ruo-chen1, TANG Huan2*, TANG Bin1*, ZHAO Ming-fu1, DAI Li-yong1, ZHAO Ya3, LONG Zou-rong1, ZHONG Nian-bing1. Study on Detection Method of Foxing on Paper Artifacts Based on
Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1567-1571. |
[15] |
LI De-hui1, WU Tai-xia1*, WANG Shu-dong2*, LI Zhe-hua1, TIAN Yi-wei1, FEI Xiao-long1, LIU Yang1, LEI Yong3, LI Guang-hua3. Hyperspectral Indices for Identification of Red Pigments Used in Cultural Relic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1588-1594. |
|
|
|
|