|
|
|
|
|
|
Overlapping Spectral Analysis Based on Genetic Algorithms and BP Neural Networks |
DU Yue, MENG Xiao-chen*, ZHU Lian-qing |
Beijing Laboratory for Optoelectronic Measurement Technology, Beijing Laboratory for Biomedical Testing Technology and Instruments, Beijing Information Science and Technology University, Beijing 100101, China |
|
|
Abstract With the rapid development of spectroscopy and fluorescence detection technology, monochrome fluorescence labeling is unable to analyze cell samples accurately and has been gradually replaced by two-color or multi-color fluorescence labeling. In the multicolor fluorescence analysis, since the cells were labeled with a variety of fluorescein usually, partial spectral overlap will occur in the emission spectrum, which need to be decomposed into an independent spectral peak to analyze accurately. Aiming at it, optimized BP neural network based on genetic algorithm (GA_BP) were used for overlapping spectral peak analysis. Firstly, the concrete structure of BP neural network was determined, and the overlapping peak was pre-processed by quadratic differential to find out the number and positions of single peaks as the characteristic value of overlapping peaks to be the input layer of BP neural network; in addition, weights and thresholds of BP neural network were Initialized, and optimal parameters like initial population and population size of the genetic algorithm were selected by using the advantage of global search; after a series of genetic evolution operations like selecting, crossing and mutating, the individuals containing the optimal weights and thresholds of BP neural network were obtained; and then the optimal parameters of the network were selected to carry out network training, which the width and intensity of the independent peak can be calculated from the output node of the optimized BP neural network; finally, combined with the eigenvalues of overlapping peak identified by quadratic differential, independent spectral peak can be separated. The randomly generated Gaussian overlapping peaks model was used as experimental simulation data, and the decomposition experiments showed high precision of the peak intensity and peak width. Wherein, the maximum relative error of decomposition of two overlapping peaks was 0.30% and 3.57%, and which of the three overlapping peaks was 0.64% and 3.83%. It can also be decomposed when the four overlapping peaks. Moreover, compared the GA_BP network model with the unoptimized BP neural network model, the results showed that the GA_BP network could reach the preset error value after five steps, while the unoptimized network model takes 19 steps. This further proves that the GA_BP network model converged faster with a fairly high precision that can be widely used for the decomposition of spectral and other overlapping peaks, which has a certain practical value compared with traditional methods.
|
Received: 2019-06-23
Accepted: 2019-10-10
|
|
Corresponding Authors:
MENG Xiao-chen
E-mail: mengxc@bistu.edu.cn
|
|
[1] YE Guo-yang, XU Ke-jun(叶国阳, 徐科军). Chinese Journal of Scientific Instrument(仪器仪表学报), 2015, 36(2): 439.
[2] FENG Fei, WANG Fu-bei, XIE Fei, et al(冯 飞, 王府北, 谢 非, 等). Acta Photonica Sinica(光子学报), 2015, 44(6): 113.
[3] HU Ruo-mu, WANG Zhen-zhen, LIU Ren-wei, et al(胡若木, 王珍珍, 刘人玮, 等). Acta Photonica Sinica(光子学报), 2018, 47(8): 39.
[4] XU Xi-rong, PAN Zi-qi, LI Xing-hua, et al(徐喜荣, 潘子琦, 李兴华, 等). Journal of Dalian University of Technology(大连理工大学学报), 2019, 59(1): 97.
[5] TAO Wei-liang, LIU Yan, WANG Xian-pei, et al(陶维亮, 刘 艳, 王先培, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(12): 3664.
[6] Du Hua, Chen Wuhui, Zhu Qingjun, et al. Applied Radiation and Isotopes, 2018, 141: 149.
[7] Li Lili, Wu Yanling, Dong Xuehu, et al. Analysis of Overlapping Peaks of GA Algorithms with Early Experience in Integration. ICIEA, 2018.
[8] LIU Guang-da, WEI Xing, ZHANG Shang, et al(刘光达, 魏 星, 张 尚, 等). Journal of Biomedical Engineering(生物医学工程杂志), 2019, 36(1): 24.
[9] Gao Yuyang, Qu Chao, Zhang Kequan. Energies, 2016, 9(10): 1.
[10] HU Yao-gai, ZHANG Xiao-xing, ZHAO Zheng-yu, et al(胡耀垓,张晓星,赵正予,等). Journal of Chongqing University(重庆大学学报),2012,35(5):76. |
[1] |
JI Jiang-tao1, 2, LI Peng-ge1, JIN Xin1, 2*, MA Hao1, 2, LI Ming-yong1. Study on Quantitative Detection of Tomato Seedling Robustness
in Spring Seedling Transplanting Period Based on VIS-NIR
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1741-1748. |
[2] |
PENG Ren-miao1, 2, XU Peng-peng2, ZHAO Yi-mo2, BAO Li-jun1, LI Cheng2*. Identification of Two-Dimensional Material Nanosheets Based on Deep Neural Network and Hyperspectral Microscopy Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1965-1973. |
[3] |
ZHANG Shuai-shuai1, GUO Jun-hua1, LIU Hua-dong1, ZHANG Ying-li1, XIAO Xiang-guo2, LIANG Hai-feng1*. Design of Subwavelength Narrow Band Notch Filter Based on
Depth Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1393-1399. |
[4] |
JIANG Rong-chang1, 2, GU Ming-sheng2, ZHAO Qing-he1, LI Xin-ran1, SHEN Jing-xin1, 3, SU Zhong-bin1*. Identification of Pesticide Residue Types in Chinese Cabbage Based on Hyperspectral and Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1385-1392. |
[5] |
WANG Zhong, WAN Dong-dong, SHAN Chuang, LI Yue-e, ZHOU Qing-guo*. A Denoising Method Based on Back Propagation Neural Network for
Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1553-1560. |
[6] |
JI Rong-hua1, 2, ZHAO Ying-ying2, LI Min-zan2, ZHENG Li-hua2*. Research on Prediction Model of Soil Nitrogen Content Based on
Encoder-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1372-1377. |
[7] |
WANG Li-qi1, YAO Jing1, WANG Rui-ying1, CHEN Ying-shu1, LUO Shu-nian2, WANG Wei-ning2, ZHANG Yan-rong1*. Research on Detection of Soybean Meal Quality by NIR Based on
PLS-GRNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1433-1438. |
[8] |
JIANG Qing-hu1, LIU Feng1, YU Dong-yue2, 3, LUO Hui2, 3, LIANG Qiong3*, ZHANG Yan-jun3*. Rapid Measurement of the Pharmacological Active Constituents in Herba Epimedii Using Hyperspectral Analysis Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1445-1450. |
[9] |
ZHAO Yong1, HE Men-yuan1, WANG Bo-lin2, ZHAO Rong2, MENG Zong1*. Classification of Mycoplasma Pneumoniae Strains Based on
One-Dimensional Convolutional Neural Network and
Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1439-1444. |
[10] |
WENG Shi-zhuang*, CHU Zhao-jie, WANG Man-qin, WANG Nian. Reflectance Spectroscopy for Accurate and Fast Analysis of Saturated
Fatty Acid of Edible Oil Using Spectroscopy-Based 2D Convolution
Regression Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1490-1496. |
[11] |
YU Yue, YU Hai-ye, LI Xiao-kai, WANG Hong-jian, LIU Shuang, ZHANG Lei, SUI Yuan-yuan*. Hyperspectral Inversion Model for SPAD of Rice Leaves Based on Optimized Spectral Index[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1092-1097. |
[12] |
TAN Ai-ling1, CHU Zhen-yuan1, WANG Xiao-si1, ZHAO Yong2*. Detection of Pearl Powder Adulteration Based on Raman Spectroscopy and DCGAN Data Enhancement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 769-775. |
[13] |
WANG Zi-xiong, XU Da-peng*, ZHANG Yi-fan, LI Jia-jia. Research Progress of Surface-Enhanced Raman Scattering Detection Analyte Molecules[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 341-349. |
[14] |
WEN Feng-rui1, GUAN Hai-ou1*, MA Xiao-dan1, ZUO Feng2, 3*, QIAN Li-li2, 3, 4. Moldy Rice Detection Method Based on Near Infrared Spectroscopy Image Processing Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 428-433. |
[15] |
LI Yuan1, 2, SHI Yao2*, LI Shao-yuan1*, HE Ming-xing3, ZHANG Chen-mu2, LI Qiang2, LI Hui-quan2, 4. Accurate Quantitative Analysis of Valuable Components in Zinc Leaching Residue Based on XRF and RBF Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 490-497. |
|
|
|
|