|
|
|
|
|
|
Determination of Chinese Honey Adulterated with Syrups by Near Infrared Spectroscopy Combined with Chemometrics |
HUANG Fu-rong1, SONG Han1, GUO Liu1, YANG Xin-hao1, LI Li-qun2, ZHAO Hong-xia2*, YANG Mao-xun3* |
1. Opto-electronic Department of Jinan University,Guangzhou 510632,China
2. Guangdong Institute of Applied Biological Resources, Guangzhou 510636,China
3. Zhuhai Dahengqin Science and Technology Development Co., Ltd., Zhuhai 519000,China |
|
|
Abstract To find a fast, accurate, and effective method for the identification of honey adulteration, near-infrared spectroscopy combined with chemometrics was used to analyze natural honey and adulterated honey in this paper. First, 224 samples were collected for the study, including 112 natural pure honey samples from 20 common honeys in China, and 112 adulterated honey sample were prepared with 6 different syrup samples according to different syrup contents(10%, 20%, 30%, 40%, 50%, or 60%). Near infrared spectral data (wavelength range of 400~2 500 nm) of all samples were obtained by near infrared light instrument scanning. Then, first derivative (FD), second derivative (SD), multiple scattering correction (MSC), and standard normal variation (SNVT) pre-processing of the original spectra combined with PLS-DA (linear algorithm) and SVM (non-linear algorithm) modeling, respectively, were adopted to establish a differential model of natural honey and syrup-adulterated honey and compare the effects of different pretreatment methods on the honey adulteration identification model established by the two different modeling algorithms. The penalty parameter c and the kernel function parameter g of the SVM algorithm were optimized by three optimization algorithms: grid search, genetic algorithm, and particle swarm optimization. The analysis results showed that the PLS-DA model established by the FD preprocessing had the best effect, and the accuracy of the best PLS-DA model was 87.50%. After MSC pre-processing, the SVM model with the penalty parameter c of 3.031 4 and the kernel function parameter g of 0.329 8 was the best. The accuracy of the best SVM model was 94.64%. It can be seen that the non-linear SVM algorithm combined with the NIR spectral data natural honey and syrup-adulterated honey identification model is better than the PLS-DA model.
|
Received: 2019-07-28
Accepted: 2019-09-25
|
|
Corresponding Authors:
ZHAO Hong-xia, YANG Mao-xun
E-mail: hxzh110@126.com;yangmaoxun1980@163.com
|
|
[1] Arroyo-Manzanares N, García-Nicolás M, Castell A, et al. Talanta, 2019, 205(1): 120123.
[2] Puscas A, Hosu A, Cimpoiu C, et al. Journal of Chromatography A, 2013, 1272(1): 132.
[3] Gan Z L, Yang Y, Li J, et al. Journal of Food Engineering, 2016, 178: 151.
[4] Çinar S B, Eksi A, Coskun I. Food Chemistry, 2014, 157: 10.
[5] Guler A, Kocaokutgen H, Garipoglu A V, et al. Food Chemistry, 2014, 155: 155.
[6] Li S, Zhang X, Shan Y, et al. Food Chemistry, 2017, 218: 231.
[7] Naila A, Flint S H, Sulaiman A Z, et al. Food Control, 2018, 90: 152.
[8] Guelpa A, Marini F, Plessis A D, et al. Food Control, 2017, 73(8): 1388.
[9] Chen L Z, Xue X F, Ye Z H, et al. Food Chemistry, 2011, 12(4)8: 1110.
[10] ZHANG Yan-nan, CHEN Lan-zhen, XUE Xiao-feng, et al(张妍楠, 陈兰珍, 薛晓锋, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2015, 35(9): 2536.
[11] Bazar G, Romvari R, Szabo A. Food Chemistry, 2016, 194: 873.
[12] Akay M F, Abut F, Lu M, et al. Neural Computing and Applications, 2016, 27(6): 1785.
[13] Gao X, Hou J. Neurocomputing, 2015, 174: 906.
[14] Galvão R K H, Araujo M C U, José G E, et al. Talanta, 2005, 67(4): 736. |
[1] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[2] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[3] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[4] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[5] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[6] |
PENG Yan-fang1, WANG Jun1, WU Zhi-sheng2*, LIU Xiao-na3, QIAO Yan-jiang2*. NIR Band Assignment of Tanshinone ⅡA and Cryptotanshinone by
2D-COS Technology and Model Application Tanshinone Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1781-1785. |
[7] |
LI Qing1, 2, XU Li1, 2, PENG Shan-gui1, 2, LUO Xiao1, 2, ZHANG Rong-qin1, 2, YAN Zhu-yun3, WEN Yong-sheng1, 2*. Research on Identification of Danshen Origin Based on Micro-Focused
Raman Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1774-1780. |
[8] |
TIAN Xue1, CHE Qian1, YAN Wei-min1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Discrimination of Millet Varieties and Producing Areas Based on Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1841-1847. |
[9] |
MA Fang1, HUANG An-min2, ZHANG Qiu-hui1*. Discrimination of Four Black Heartwoods Using FTIR Spectroscopy and
Clustering Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1915-1921. |
[10] |
WANG Xue-pei1, 2, ZHANG Lu-wei1, 2, BAI Xue-bing3, MO Xian-bin1, ZHANG Xiao-shuan1, 2*. Infrared Spectral Characterization of Ultraviolet Ozone Treatment on Substrate Surface for Flexible Electronics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1867-1873. |
[11] |
WANG Li-qi1, YAO Jing1, WANG Rui-ying1, CHEN Ying-shu1, LUO Shu-nian2, WANG Wei-ning2, ZHANG Yan-rong1*. Research on Detection of Soybean Meal Quality by NIR Based on
PLS-GRNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1433-1438. |
[12] |
DAI Lu-lu1, YANG Ming-xing1, 2*, WEN Hui-lin1. Study on Chemical Compositions and Origin Discriminations of Hetian Yu From Maxianshan, Gansu Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1451-1458. |
[13] |
CHEN Jin-hao, JIANG Da-peng, ZHANG Yi-zhuo*, WANG Ke-qi*. Research on Data Migration Modeling Method for Bending Strength of
Solid Wood Based on SWCSS-GFK-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1471-1477. |
[14] |
FU Yan-hua1, LIU Jing2*, MAO Ya-chun2, CAO Wang2, HUANG Jia-qi2, ZHAO Zhan-guo3. Experimental Study on Quantitative Inversion Model of Heavy Metals in Soda Saline-Alkali Soil Based on RBF Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1595-1600. |
[15] |
LI Jia-yi1, YU Mei1, LI Mai-quan1, ZHENG Yu2*, LI Pao1, 3*. Nondestructive Identification of Different Chrysanthemum Varieties Based on Near-Infrared Spectroscopy and Pattern Recognition Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1129-1133. |
|
|
|
|