|
|
|
|
|
|
Quantitative Inversion of Soil Organic Matter Content in Northern Alluvial Soil Based on Binary Wavelet Transform |
WANG Yan-cang1, 3, YANG Xiu-feng1, 3, ZHAO Qi-chao1, 3, GU Xiao-he2, 4*, GUO Chang1, 3, LIU Yuan-ping1,3 |
1. Institute of Computer and Remote Sensing Information Technology, North China Institute of Aerospace Engineering,Langfang 065000, China
2. National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
3. Aerospace Remote Sensing Information Processing and Application Collaborative Innovation Center of Hebei Province,Langfang 065000, China
4. Key Laboratory of Information Technology in Agriculture, Ministry of Agriculture, Beijing 100097, China |
|
|
Abstract In order to separate the information of the content of soil organic matter contained in soil spectra, to extract the spectral response information of the matter, to improve the diagnostic accuracy and reliability of soil organic matter content, this study takes the content of organic matter in tidal soil as the research object, and takes the soil parameters and hyperspectral data of 96 farmlands collected from Beijing area as the data source to research and analyze. First, the binary wavelet technique is used to separate the soil spectral data into 5 scales of high-frequency data and low-frequency data, and then these two kinds of data are respectively used for the correlation analysis with the measured soil organic matter data. Afterwards, the optimal band combination is extracted to build the diagnosis model of organic matter content. Finally, results of the study show that: (1) The binary wavelet technology can restrain the noise interference to high frequency information, and effectively enhance the spectral sensitivity to soil organic matter content so as to improve the diagnostic accuracy and reliability of organic matter content; (2) Under the binary wavelet technique, the diagnostic ability of high frequency information to organic matter content is obviously superior to that of low frequency information. The diagnostic ability of low frequency information to soil organic matter content decreases with the increase of scale, while high frequency information increases with the scale increasing and then decreases; (3) Compared with the mathematical method, the model based on the binary wavelet transform algorithm has higher accuracy and better stability. The prediction accuracy of the optimal model is improved by 31.5% and the reliability is increased by 10.5%.
|
Received: 2018-08-08
Accepted: 2018-12-25
|
|
Corresponding Authors:
GU Xiao-he
E-mail: guxh@nercita.org.cn
|
|
[1] LIU Yan-sui, ZHANG Zi-wen, WANG Jie-yong(刘彦随,张紫雯,王介勇). Acta Geographica Sinica(地理学报),2018,73(2):203.
[2] Bongiovanni R, Lowenberg Deboer J. Precision Agricultural, 2004, (5): 359.
[3] YANG Jian-feng, MA Jun-cheng, WANG Ling-chao(杨建锋, 马军成, 王令超). Geospatial Information(地理空间信息),2015, 13(2): 47.
[4] JI Wen-jun, SHI Zhou, ZHOU Qing, et al(纪文君, 史 舟, 周 清,等). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2012, 31(3): 277.
[5] CHEN Hong-yan, ZHAO Geng-xing, LI Xi-can, et al(陈红艳, 赵庚星, 李希灿,等). Scientia Agricultura Sinica(中国农业科学),2012, 45(7): 1425.
[6] St Luce M, Ziadi N, Zebarth B J, et al. Geoderma, 2014, (232-234): 449.
[7] Ahmed Z, Iqbal J. European Journal of Remote Sensing, 2014, 47(1): 557.
[8] ZHAI Xing-yu, ZHANG Xing-yu, LI Hao, et al(翟星雨,张兴义,李 浩,等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报),2018,34(19):155.
[9] LU Yan-li, BAI You-lu, YANG Li-ping, et al(卢艳丽, 白由路, 杨俐苹,等). Journal of Plant Nutrition and Fertilizers(植物营养与肥料学报), 2011, 17(2): 456.
[10] GUO Guang-fen, ZHANG Chen-yi,XU Ying(郭广芬, 张称意, 徐 影). Chinese Journal of Ecology(生态学杂志), 2006,(4): 435.
[11] LAN Yan, HUANG Guo-qin, YANG Bin-juan, et al(兰 延, 黄国勤, 杨滨娟,等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2014, 30(13): 146.
[12] LI Wen-hui, LI Ai-min,ZHANG Shu-cai, et al(李文慧, 李爱民, 张树才,等). Environmental Chemistry(环境化学), 2008,(4): 503.
[13] SUN Xiang-ping, LI Guo-xue, XIAO Ai-ping, et al(孙向平, 李国学, 肖爱平,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2014, 34(9): 2413.
[14] LI Ye, ZHOU Cong-cong, DAI Ling-xing, et al(黎 烨, 周聪聪, 戴零星,等). Acta Scientiae Circumstantiae(环境科学学报), 2017, 37(3): 1098.
[15] JIANG Jie, LI Li, SUN Guo-xin(姜 杰, 李 黎, 孙国新). Environmental Chemistry(环境化学), 2012, 31(12): 2002.
[16] Henderson T L, Baumgardner M F, Franzmeier D P, et al. Soil Science Society of America Journal, 1992, 56(3): 865.
[17] Ben-Dor E, Banin A. Soil Science Society of America Journal, 1995, 59(2): 364.
[18] Mccarty G W, Reeves J B, Reeves V B, et al. Soil Science Society of America Journal, 2002, 66(2): 640.
[19] CHEN Hong-yan, ZHAO Geng-xing, ZHANG Xiao-hui, et al(陈红艳,赵庚星,张晓辉,等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报),2014,30(8):91.
[20] PENG Jie, LI Xi, ZHOU Qing, et al(彭 杰, 李 曦, 周 清,等). Journal of Remote Sensing(遥感学报), 2013, 17(6): 1396.
[21] Di Nezio M S, Pistonesi M F, Fragoso W D, et al. Microchemical Journal, 2007, 85(2): 194.
[22] YANG Chang-bao, LI Dong-hui, LIU Jin-yi, et al(杨长保,李东辉,刘津怿,等). Journal of Basic Science and Engineering(应用基础与工程科学学报),2017,25(5):869.
[23] YE Qin, JIANG Xue-qin, LI Xi-can, et al(叶 勤, 姜雪芹, 李西灿,等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2017, 48(3): 164.
[24] Wiesmeier M, Barthold F, Blank B, et al. Plant & Soil, 2011, 340(1/2): 7.
[25] ZENG Yin, LU Yu-zhen, DU Chang-wen, et al(曾 胤, 陆宇振, 杜昌文,等). Acta Pedologica Sinica(土壤学报), 2014, 51(6): 1262.
[26] ZHANG Juan-juan, TIAN Yong-chao, ZHU Yan, et al(张娟娟, 田永超, 朱 艳,等). Scientia Agricultural Sinica(中国农业科学), 2009, 42(9): 3154.
[27] SI Hai-qing, YAO Yan-min, WANG De-ying, et al(司海青, 姚艳敏, 王德营,等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2015, 31(9): 114. |
[1] |
LIU Yan-de, WANG Shun. Research on Non-Destructive Testing of Navel Orange Shelf Life Imaging Based on Hyperspectral Image and Spectrum Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1792-1797. |
[2] |
CHEN Yuan-zhe1, WANG Qiao-hua1, 2*, TIAN Wen-qiang1, XU Bu-yun1, HU Jian-chao1. Nondestructive Determinations of Texture and Quality of Preserved Egg Gel by Hyperspectral Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1985-1992. |
[3] |
ZHANG Jie1, 2, XU Bo1, FENG Hai-kuan1, JING Xia2, WANG Jiao-jiao1, MING Shi-kang1, FU You-qiang3, SONG Xiao-yu1*. Monitoring Nitrogen Nutrition and Grain Protein Content of Rice Based on Ensemble Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1956-1964. |
[4] |
ZHENG Yi1, 2, 3, WANG Yao1, 2, LIU Yan1, 2*. Study on Classification and Recognition of Mountain Meadow Vegetation Based on Seasonal Characteristics of Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1939-1947. |
[5] |
PENG Ren-miao1, 2, XU Peng-peng2, ZHAO Yi-mo2, BAO Li-jun1, LI Cheng2*. Identification of Two-Dimensional Material Nanosheets Based on Deep Neural Network and Hyperspectral Microscopy Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1965-1973. |
[6] |
JIANG Rong-chang1, 2, GU Ming-sheng2, ZHAO Qing-he1, LI Xin-ran1, SHEN Jing-xin1, 3, SU Zhong-bin1*. Identification of Pesticide Residue Types in Chinese Cabbage Based on Hyperspectral and Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1385-1392. |
[7] |
JING Xia1, ZHANG Jie1, 2, WANG Jiao-jiao2, MING Shi-kang2, FU You-qiang3, FENG Hai-kuan2, SONG Xiao-yu2*. Comparison of Machine Learning Algorithms for Remote Sensing
Monitoring of Rice Yields[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1620-1627. |
[8] |
JIANG Qing-hu1, LIU Feng1, YU Dong-yue2, 3, LUO Hui2, 3, LIANG Qiong3*, ZHANG Yan-jun3*. Rapid Measurement of the Pharmacological Active Constituents in Herba Epimedii Using Hyperspectral Analysis Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1445-1450. |
[9] |
DAI Ruo-chen1, TANG Huan2*, TANG Bin1*, ZHAO Ming-fu1, DAI Li-yong1, ZHAO Ya3, LONG Zou-rong1, ZHONG Nian-bing1. Study on Detection Method of Foxing on Paper Artifacts Based on
Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1567-1571. |
[10] |
LI De-hui1, WU Tai-xia1*, WANG Shu-dong2*, LI Zhe-hua1, TIAN Yi-wei1, FEI Xiao-long1, LIU Yang1, LEI Yong3, LI Guang-hua3. Hyperspectral Indices for Identification of Red Pigments Used in Cultural Relic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1588-1594. |
[11] |
LIU Mei-chen, XUE He-ru*, LIU Jiang-ping, DAI Rong-rong, HU Peng-wei, HUANG Qing, JIANG Xin-hua. Hyperspectral Analysis of Milk Protein Content Using SVM Optimized by Sparrow Search Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1601-1606. |
[12] |
LIU Yan-de, LI Mao-peng, HU Jun, XU Zhen, CUI Hui-zhen. Detection of Citrus Granulation Based on Near-Infrared
Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1366-1371. |
[13] |
AN Ying1, 2, 4, DING Jing3, LIN Chao2, LIU Zhi-liang1, 4*. Inversion Method of Chlorophyll Concentration Based on
Relative Reflection Depths[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1083-1091. |
[14] |
YU Yue, YU Hai-ye, LI Xiao-kai, WANG Hong-jian, LIU Shuang, ZHANG Lei, SUI Yuan-yuan*. Hyperspectral Inversion Model for SPAD of Rice Leaves Based on Optimized Spectral Index[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1092-1097. |
[15] |
LI Meng1, 2, ZHANG Xiao-bo2, LIU Shao-bo3, CHEN Xing-feng4*, HUANG Lu-qi5*, SHI Ting-ting2, YANG Rui6, LIU Shu7, ZHENG Feng-jie8. Partly Interpretable Machine Learning Method of Ginseng Geographical Origins Recognition and Analysis by Hyperspectral Measurements[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1217-1221. |
|
|
|
|