光谱学与光谱分析 |
|
|
|
|
|
Fast Monitoring Soil Environmental Qualities of Heavy Metal by Portable X-Ray Fluorescence Spectrometer |
WANG Bao1, YU Jian-xin1*, HUANG Biao2, HU Wen-you2, CHANG Qing3 |
1. Engineering Research Center of Science and Technology of Land and Resources, Yunnan Agricultural University, Kunming 650201, China2. Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China3. Geological Survey of Jiangsu Province, Nanjing 210018, China |
|
|
Abstract Portable X-ray fluorescence(PXRF) spectrometer as a new type of equipment for quick test has a prominent prospect, but there are also shortcomings of detection range and limition, therefore this paper studied the suitability of PXRF spectrometer in monitoring soil environmental qualities of heavy metals included Cr, Ni, Cu, Zn, Pb, Cd, As and Hg, the aim of this paper is to screen elements which can be detected by this kind of instrument and evaluate the accuracy of test results. The research method is to test heavy metals contaminated soil samples by PXRF spectrometer, evaluate the accuracy of test results of PXRF compared with inductively coupled plasma mass(ICP-MS), then establish linear regression relationship between analysis results of PXRF and ICP-MS method. The results show that, (1) When measuring the soil environmental quality, PXRF spectrometer is appropriate to measure the content of Pb, Zn, Cr and Cu, except Ni, Cd, As and Hg. (2) Compared with the test value of ICP-MS, the test value of Pb and Zn is lower, the test value of Cu is higher, the test value of Cr is too high, all the results of PXRF spectrometer should be linear corrected according to standard analysis method. In conclusion, PXRF spectrometer is suitable for monitoring environmental quality of soil which is polluted by heavy metal such as Pb, Zn, Cr and Cu, it is an analysis means with characteristics of simple and rapid, accurate and reliable. The innovation of this article is that reasonable avoiding the shortcomings of PXRF spectrometer as using the instrument to monitor soil environmental quality, at last improved the application value of test results.
|
Received: 2014-02-22
Accepted: 2014-05-21
|
|
Corresponding Authors:
YU Jian-xin
E-mail: yjxin58cn@aliyun.com
|
|
[1] Wei B G, Yang L S. Microchemical Journal, 2010, 94(2): 99. [2] Raghunath R, Tripathi R M, Kumar A V, et al. Environmental Research, 1999, 80(3): 215. [3] Ministry of Enviroment Protection of the People’s Republic of China. 2004, HJ/T 166—2004. [4] QIAN Yuan-luo, ZHAO Chun-jiang, LU An-xiang, et al. Farm Machinery, 2011,(8): 137. [5] LI Bing, ZHOU Jian-xiong, ZHAN Xiu-chun. Acta Geologica Sinica, 2011, 85(11): 1878. [6] QIAN Jian-ping, WU Gao-hai, CHEN Hong-yi. Geophysical and Geochemical Exploration, 2010, 34(4): 497. [7] Lu An-xiang, WANG Ji-hua, PAN Li-gang, et al. Spectroscopy and Spectral Analysis, 2010, 30(10): 2848. [8] WANG Shu-qiu. Mining and Metallurgy, 1995, 4(2): 106. [9] QI Chang-wei, ZHU Jie-yong, WANG Jia-yin, et al. Geology and Resources, 2013, 22(1): 64. [10] China State Bureau of Quality and Technical Supervision. 1995, GB15618—1995. [11] WANG Li-qian, XIANG Feng. Environmental Science Survey, 2012, 31(5): 97. [12] GU Cheng-yan, LIU Jian-dong, XUE Huai-you. Morden Mining, 2013,(9): 181. [13] CHEN Yuan, ZHANG Jie, ZHUANG Yuan. Environmental Science and Management, 2013, 38(3): 121. [14] ZHANG Si-chong, ZHOU Xiao-cong, YE Hua-xiang, et al. Chinese Agricultural Science Bulletin, 2009, 25(13): 230. |
[1] |
YANG Ke-ming, ZHANG Wei, WANG Xiao-feng, SUN Tong-tong, CHENG Long. Differentiation and Level Monitoring of Corn Leaf Stressed by Cu and Pb Derived from Spatial Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2200-2208. |
[2] |
XIAO Xue-feng1, SUN Yong-jun1, 2*, SHEN Hao1, SUN Wen-qaun1, ZHENG Huai-li3, XU Yan-hua2, ZHU Cheng-yu1. Spectral Characterizations of CSC-P(AM-AA) with Function of Trapping Heavy Metals and Its Removal Efficiency of Cu2+[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1809-1813. |
[3] |
TAO Chao1*, WANG Ya-jin1, ZOU Bin1, 2, TU Yu-long1, JIANG Xiao-lu1. Assessment and Analysis of Migrations of Heavy Metal Lead and Zinc in Soil with Hyperspectral Inversion Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1850-1855. |
[4] |
ZHANG Li-jiao1,2, LAI Wan-chang1, XIE Bo2, 3, HUANG Jin-chu1, LI Dan1, WANG Guang-xi1, YANG Qiang1, CHEN Xiao-li1. The Effect of Filterson on the Determination of Trace Heavy Metal Cd in Light Matrix by Energy Dispersive X-Ray Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1917-1921. |
[5] |
WANG Shi-fang, LUO Na, HAN Ping*. Application of Energy-Dispersive X-Ray Fluorescence Spectrometry to the Determination of As, Zn,Pb and Cr in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1648-1654. |
[6] |
YAN Fang, ZOU Liang-hui*,WANG Zhi-chun*. Detection of Adsorption for Heavy Metals Ions Based on Terahertz Time Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1044-1048. |
[7] |
PANG Ting-wen1, YANG Zhi-jun1, 2*, HUANG Yi-cong1, LEI Xue-ying1, ZENG Xuan1, LI Xiao-xiao1. Adsorption Properties of Thiol-Modified, Sodium-Modified and Acidified Bentonite for Cu2+, Pb2+ and Zn2+[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1203-1208. |
[8] |
FANG Fang1, JI Yu-shan1, LI Xiang1, BAI Na1, LIU Ying1,2*. Assessment of Pollution and Heavy Metals in Filtered Water and Surface Sediments of Taihu Lake by Using ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1245-1250. |
[9] |
CHENG Hang1,2, WAN Yuan3, CHEN Yi-yun2,4,5*, WAN Qi-jin1,6,7*, SHI Tie-zhu8, SHEN Rui-li9, GUO Kai2, HU Jia-meng2. Study on the Characteristics and Mechanism of Visible and Near Infrared Reflectance Spectra of Soil Heavy Metals[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 771-778. |
[10] |
GU Yan-hong1,2,3, ZHAO Nan-jing1,3*, MA Ming-jun1,3, MENG De-shuo1,3, JIA Yao1,3, FANG Li1,3, LIU Jian-guo1,3, LIU Wen-qing1,3. Mapping Analysis of Heavy Metal Elements in Polluted Soils Using Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 982-989. |
[11] |
TU Yu-long, ZOU Bin*, JIANG Xiao-lu, TAO Chao, TANG Yu-qi, FENG Hui-hui. Hyperspectral Remote Sensing Based Modeling of Cu Content in Mining Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 575-581. |
[12] |
YANG Ke-ming1, WANG Guo-ping1,2, FU Ping-jie1, ZHANG Wei1, WANG Xiao-feng1. A Model on Extracting the Pollution Information of Heavy Metal Copper Ion Based on the Soil Spectra Analyzed by HHT in Time-Frequency[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 564-569. |
[13] |
GUO Hui1,2, YANG Ke-ming1*, ZHANG Wen-wen1, LIU Cong1, XIA Tian1. Spectra Recognition of Corn Pollution Degree under Copper and Lead Ion Stress[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 212-217. |
[14] |
CHEN Yong1, WEI Jia2, LIN Cai1, XU Jing2, SUN Xiu-wu1, LIN Hui1*. Based on Optical Properties of Chromophoric Dissolved Organic Matter in the Monitoring of Coastal Eutrophication[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3803-3808. |
[15] |
XU Liang-ji1,2, LI Qing-qing1, ZHU Xiao-mei1, LIU Shu-guang1. Hyperspectral Inversion of Heavy Metal Content in Coal Gangue Filling Reclamation Land[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3839-3844. |
|
|
|
|