光谱学与光谱分析 |
|
|
|
|
|
Applying Attenuated Total Reflection-Mid-Infrared (ATR-MIR) Spectroscopy to Detect Hairtail Surimi in Mixed Surimi and Their Surimi Products |
YOU Zhao-hong, LIU Zi-hao, GONG Chao-yong, YANG Xiao-ling, CHENG Fang* |
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310059,China |
|
|
Abstract ATR-MIR spectroscopic analysis was used to classify sliver carp surimi and surimi products adulterated with different levels of hairtail surimi. Five chemometric methods, including SIMCA (soft independent modeling class of analogies), KNN (K-nearest neighbor), SVR (support vector machines regression), PLS-DA (partial least squares discriminate analysis) and ID3 (interative dicremiser version 3) Decision tree were used to build the classifying models. And the performances of the models were compared. Results showed that for both cooked and uncooked mixed surimi samples, better classifications were obtained using SIMCA model, the percentage of the correct classification reached 96.59% and 96.43%, and the corresponding RMSECV were 0.185 7 and 0.189 8, r value were 0.988 0 and 0.994 1 respectively. The results of this study demonstrated for the first time that ATR-MIR spectroscopy combined with chemometrics method can be used to classify sliver carp surimi and surimi products adulterated with different levels of hairtail surimi.
|
Received: 2015-03-10
Accepted: 2015-06-18
|
|
Corresponding Authors:
CHENG Fang
E-mail: fcheng@zju.edu.cn
|
|
[1] Al-Jowder O, Defernez M, Kemsley E K, et al. J. Agric. Food Chem., 1999,47(8): 3210. [2] Al-Jowder O, Kemsley E, Wilson R H. J. Agric. Food Chem., 2002, 50(6): 1325. [3] Alamprese C, Casale M, Sinelli N, et al. LWT-Food Sci. Technol., 2013 53(1): 225. [4] An H, Wei C, Zhao J, et al. J. Food Sci., 1989, 54(2): 253. [5] Argyri A A, Jarvis R M, Wedge D, et al. Food Control, 2013,29(2): 461. [6] Bensaid A M, Bouhouch N, Bouhouch R, et al. Fuzzy Information Processing Society-NAFIPS, 1998 Conference of the North America, Pensacola Beach, FL. IEEE, 20-21 August 1998. [7] Borin A, Ferro M F, Mello C, et al. Anal. Chim. Acta, 2006,579(1): 25. [8] Cawley G C, Talbot N L C. Neural Networks, 2004,17(10): 1467. [9] Chen Q, Ding J, Cai J, et al. Food Chem., 2012, 135(2): 590. [10] Chen Q, Zhao J, Fang C, et al. Spectrochim Acta Part A: Mol. Biomo. Spectrosc., 2007, 66(3): 568. [11] Cheng C Y, Shi Y C, Lin S R, et al. Journal of Mar. Sci. Technol., 2012, 20(5): 570. [12] Chu X. Chemometrics Methods. In: Chu X, editor. Molecular Spectroscopy Analytical Technology Combined with Chemometrics and Its Application. Beijing: Chemical Industry Press, 2011. 31. [13] Cozzolino D, Smyth H E, Gishen M. J. Agric. Food Chem., 2003, 51(26): 7703. [14] Cristianini N, Shawe-Taylor J. Kernel-induced Feature Spaces. In: Cristianini N, Shawe-Taylor J, editor. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge: Cambridge university press, 2000. 56. [15] Teye E, Huang X, Lei W, et al. Food Research International, 2014, 55: 288. [16] Gayo J, Hale S A, Blanchard S M. J. Agric. Food Chem., 2006 54(4): 1130. [17] Jaiswal P, Jha S N, Borah A, et al. Food Chem., 2015, 168: 41. [18] Lendl G R B. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy. In: Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd., 2013. doi: 10.1002/9780470027318.a9287. [19] Li J, Lu H, Zhu J, et al. Trends Food Sci. Technol., 2009, 20(2): 73. [20] Meza-Márquez O G, Gallardo-Velázquez T, Osorio-Revilla G. Meat Sci., 2010,86(2): 511. [21] Niederer M, Bollhalder R. Mitteilungen aus Lebensmitteluntersuchung und Hygiene, 2001,92(2): 133. [22] Nowsad A, Hoque M, Hossain M, et al. Progress Agric., 2007, 18(2): 157. [23] Park J W. Surimi Seafood: Products, Market, and Manufacturing. In: Park J W, Editor. Surimi and Surimi Seafood, Second Edition. Boca Raton: CRC Press Taylor & Francis Group., 2005. 375. [24] Peng X, Shi T, Song A, et al. Remote Sensing, 2014, 6(4): 2699. [25] Perez-Enciso M, Tenenhaus M. Human Genet, 2003,112(5-6): 581. [26] Rohman A, Erwanto Y, Che Man Y B. Meat Sci., 2011,88(1): 91. [27] Sánchez-González I, Carmona P, Moreno P, et al, Food Chem., 2008, 106(1): 56. [28] Shen X, Zheng X, Song Z, et al. Rapid Identification of Waste Cooking Oil with Near Infrared Spectroscopy Based on Support Vector Machine. Comput Computing Technol Agric VI, Springer, 2013. 11. [29] Shimba A, Morimoto M, Sato E, et al. Anal. Sci., 2001, 17(i1503): i1503. [30] Sinelli N, Limbo S, Torri L, et al. Meat Sci., 2010, 86(3): 748. [31] Smola A J, Schlkopf B. Statistics and Computing, 2004,14(3): 199. [32] Tan C, Chen H, Lin Z, et al. Anal. Lett., 2015, 48(2): 291. [33] Tan S B. Expert Systems with Applications, 2005,28(4): 667. [34] Thissen U, Pepers M, üstün B, et al. Chemom Intell. Lab. Syst., 2004, 73(2): 169. [35] Thissen U, üstün B, Melssen W J, et al. Anal. Chem., 2004, 76(11): 3099. [36] Vapnik V N. The Nature of Statistical Learning Theory. In: Vapnik V N, editor. Statistics for Engineering and Information Science. New York: Springer-Verlag, 2000. 55. [37] Xie L, Ying Y, Ying T, et al. Anal. Chimica Acta, 2007, 584(2): 379. [38] Yang C C, Hsu Y Y. Power Systems, IEEE Transactions on, 1994,9(3): 1569. [39] Yaqin J, et al. J. Chin. Institute Food Sci. Technol., 2012, 4(12): 90. [40] Yasami Y, Mozaffari S P. J. Supercomputing, 2010, 53(1): 231. [41] Zhao M, Downey G, O’Donnell C P. Meat Sci., 2014, 96(2): 1003. |
[1] |
CAO Xiao-feng, REN Hui-ru, LI Xing-zhi, YU Ke-qiang*, SU Bao-feng*. Discrimination of Winter Jujube’s Maturity Using Hyperspectral Technique Combined with Characteristic Wavelength and Spectral Indices[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2175-2182. |
[2] |
CHEN Hao1,2,JU Yu1,HAN Li1,LIU Jun-biao1. Effects of Temperature of Laser Shell on Background Signals for Trace Gas Detection in TDLAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1670-1674. |
[3] |
ZHANG Yan-jun1, SUN Qiu-ming1, WANG Hui-quan2, ZHAO Zhe2, SUN Jing-gong1, MA Jun1*, LIU Dong-yuan1, 2. VIP Analysis to Simplify the NIR Detection Study of the Dural Hematoma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1691-1695. |
[4] |
LI Sheng-fang1,2, JIA Min-zhi1, DONG Da-ming2,3*. Fast Measurement of Sugar in Fruits Using Near Infrared Spectroscopy Combined with Random Forest Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1766-1771. |
[5] |
SUN Hai-xia, ZHANG Shu-juan*, XUE Jian-xin, ZHAO Xu-ting, LIU Jiang-long. Application of Spectral and Imaging Technique to Detect Quality and Safety of Fruits and Vegetables: A Review[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1779-1785. |
[6] |
WU Xin1,2, LI Guang-lin1*, WEN Zhi-yu3. Study and Determination the Concentration of CNO-Ion of the QPQ with the Sequential Injection Spectrophotometric Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1824-1828. |
[7] |
XU Kun1, 2, 3, WANG Ju-lin1, 2, 3*, HE Qiu-ju4. The Influence of Alum in Alum Gelatin Solution on Cellulose,Calcium Carbonate and Gelatin in XUAN Paper[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1829-1833. |
[8] |
LI Xiao-nan1, LIU Guo-qiang1, 2, HU Li-li1. Research on Nuclear Magnetic Resonance High-Quality Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1358-1361. |
[9] |
SUN Tong, MO Xin-xin, LIU Mu-hua*. Effect of Pericarp on Prediction Accuracy of Soluble Solid Content in Navel Oranges by Visible/Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1406-1411. |
[10] |
LI Ying1, LI Yao-xiang1*, LI Wen-bin2, JIANG Li-chun3. Model Optimization of Wood Property and Quality Tracing Based on Wavelet Transform and NIR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1384-1392. |
[11] |
LU Shu-hua1, 2*, WANG Yin-shu3. Developments in Detection of Explosives Based on Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1412-1419. |
[12] |
ZHANG Yan-jun, ZHANG Fang-cao, FU Xing-hu*, XU Jin-rui. Raman Spectra Based on QPSO-MLSSVM Algorithm to Detect the Content of Four Components Blent Oil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1437-1443. |
[13] |
HAN Guang, LIU Rong*, XU Ke-xin. Extraction of Effective Signal in Non-Invasive Blood Glucose Sensing with Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1599-1604. |
[14] |
YOU Zhao-hong1,2, HONG Han-mei2, CHENG Fang2*, YANG Xiao-ling3. Feasibility of 2DCOS Based on ATR-MIR in Surimi Quality Inspection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1626-1632. |
[15] |
JIANG Qiang1,WANG Yue2*,WEN Zhe3,WANG Ji-hua4. Moisture Content Determination of Transformer Oil by Using Terahertz Time-Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1049-1052. |
|
|
|
|