|
|
|
|
|
|
Stellar Spectra Classification Method Based on Multi-Class Support Vector Machine |
ZHANG Jing, LIU Zhong-bao*, SONG Wen-ai, FU Li-zhen, ZHANG Yong-lai |
School of Software, North University of China, Taiyuan 030051, China |
|
|
Abstract Support vector machine (SVM), a typical classification method, has been widely used in stellar spectra classification. It performs well in practice, while it encounters the multi-class classification challenge. In order to solve the problem above, multi-class support vector machine (MCSVM) was proposed in this paper based on the in-depth analysis of SVM. Meanwhile, the stellar spectra classification model based on multi-class support vector machine was constructed. The advantage of the proposed method is that the samples’ class can be determined by a classification process. Comparative experiments with the existed multi-class classification method on the SDSS DR8 datasets verify the effectiveness of the proposed method.
|
Received: 2017-07-30
Accepted: 2017-11-16
|
|
Corresponding Authors:
LIU Zhong-bao
E-mail: liz_zhongbao@hotmail.com
|
|
[1] Xue J Q, Li Q B, Zhao Y H. Chinese Astronomy and Astrophysics, 2001, 25: 120.
[2] Alejandra R, Bernardino A, Carlos D, et al. Expert Systems with Applications, 2004, 27: 237.
[3] Malyuto V. New Astronomy, 2002, 7: 461.
[4] Bu Y D, Chen F Q, Pan J C. New Astronomy, 2014, 28: 35.
[5] Du C D, Luo A L, Yang H F. New Astronomy, 2017, 51: 51.
[6] ZHAO Mei-fang, WU Chao, LUO A-li, et al(赵梅芳, 吴 潮, 罗阿理, 等). Acta Astronomica Sinica(天文学报), 2007, 48(1): 1.
[7] SUN Shi-wei, LUO A-li, ZHANG Ji-fu(孙士卫, 罗阿理, 张继福). Astronomical Research & Technology, 2007, 4(3): 276.
[8] PAN Jing-chang, WANG Jie, JIANG Bin, et al(潘景昌, 王 杰, 姜 斌, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(8): 2651. |
[1] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[2] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[3] |
SHEN Si-cong, ZHANG Jing-xue, CHEN Ming-hui, LI Zhi-wei, SUN Sheng-nan, YAN Xue-bing*. Estimation of Above-Ground Biomass and Chlorophyll Content of
Different Alfalfa Varieties Based on UAV Multi-Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3847-3852. |
[4] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[5] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[6] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[7] |
LIU Fei1, TAN Jia-jin1*, XIE Gu-ai2, SU Jun3, YE Jian-ren1. Early Diagnosis of Pine Wilt Disease Based on Hyperspectral Data and Needle Resistivity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3280-3285. |
[8] |
MA Qian1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, CHENG Hui-zhu1, 2, ZHAO Yan-chun1, 2. Research on Classification of Heavy Metal Pb in Honeysuckle Based on XRF and Transfer Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2729-2733. |
[9] |
LÜ Shi-lei1, 2, 3, WANG Hong-wei1, LI Zhen1, 2, 3*, ZHOU Xu1, ZHAO Jing1. Hyperspectral Identification Model of Cantonese Tangerine Peel Based on BWO-SVM Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2894-2901. |
[10] |
WANG Jun-jie1, YUAN Xi-ping2, 3, GAN Shu1, 2*, HU Lin1, ZHAO Hai-long1. Hyperspectral Identification Method of Typical Sedimentary Rocks in Lufeng Dinosaur Valley[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2855-2861. |
[11] |
FAN Ya-wen, LIU Yan-ping*, QIU Bo, JIANG Xia, WANG Lin-qian, WANG Kun. Research on Spectral Classification of Stellar Subtypes Based on
SSTransformer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2523-2528. |
[12] |
ZHANG Hai-liang1, XIE Chao-yong1, TIAN Peng1, ZHAN Bai-shao1, CHEN Zai-liang1, LUO Wei1*, LIU Xue-mei2*. Measurement of Soil Organic Matter and Total Nitrogen Based on Visible/Near Infrared Spectroscopy and Data-Driven Machine Learning Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2226-2231. |
[13] |
LI Hao-dong1, 2, LI Ju-zi1*, CHEN Yan-lin1, HUANG Yu-jing1, Andy Hsitien Shen1*. Establishing Support Vector Machine SVM Recognition Model to Identify Jadeite Origin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2252-2257. |
[14] |
JIANG Xia*, QIU Bo, WANG Lin-qian, GUO Xiao-yu. Automatic Classification Method of Star Spectra Based on
Semi-Supervised Mode[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1875-1880. |
[15] |
LI Bin, HAN Zhao-yang, WANG Qiu, SUN Zhao-xiang, LIU Yan-de*. Research on Bruise Level Detection of Loquat Based on Hyperspectral
Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1792-1799. |
|
|
|
|