|
|
|
|
|
|
Distribution of Phosphorus Fractions and Kinetics Characteristics in Surface Sediments of Taihu Lake by Using Spectrophotometry |
JI Yu-shan1, FANG Fang1, WANG Hui-bin1, MA Xiao-yan1, LIU Ying1,2* |
1. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
2. Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China |
|
|
Abstract The surface sediments are the source and sink of many pollutants of water. Studies have shown that phosphorus and other nutrient elements in surface sediments of Taihu Lake area, specially in Meiliang Bay and East Taihu Lake, are seriously polluted.SMT method (Standards Measurements and Testing) and molybdenum antimony anti-spectrophotometry were used to pretreat and analyze phosphorus of the 18 surface sediment samples in Taihu Lake, China, and the total phosphorus pollution was evaluated in comparison with the standards of China, Canada and the United States, respectively. Moreover, the adsorption and desorption kinetics equations were established by linear fitting, the adsorption characteristics of phosphorus under different pH and soil/water ratio were obtained. And we also studied the desorption characteristics of phosphorus under different temperature and pH conditions. The results showed that the highest contents of total phosphorus, inorganic phosphorus, organic phosphorus and acid phosphorus all appeared in S9 sampling sites, the highest content of alkali phosphorus was found in S11 sampling site. For all sampling sites, the order of average contentof each fraction phosphorus was (μg·g-1): inorganic phosphorus (401.43)>acid phosphorus (377.81)>organic phosphorus (175.37)>alkali phosphorus (25.53). The results of pollution evaluation showed that except for S12,S14~S16 and S18, other sampling sites suffered varying degrees of contamination. Both adsorption and desorption processes of phosphorus on the surface sediments followed the pseudo-second-order kinetics equation. The optimum soil/water ratio was 25∶1. The pH had different effects on adsorption and desorption, respectively. The results provided not only a theoretical basis for governing the phosphorus pollution but also credible experimental data for studying the migration of phosphorus at the sediment-water interface in Meiliang Bay and Taihu Lake.
|
Received: 2017-07-05
Accepted: 2017-11-26
|
|
Corresponding Authors:
LIU Ying
E-mail: liuying4300@163.com
|
|
[1] The Ministry of Water Resources of the People’s Republic of China(中华人民共和国水利部). China Water Resources Bulletin 2015(2015年中国水资源公报), 2015.
[2] Ruban V, Lopez-Sanchez J F, Pardo P, et al. Fresenius J. Anal. Chem., 2001, 370: 224.
[3] Wang L Q, Liang T. PLoS One, 2015, 10(5): 1.
[4] YANG Hong-wei(杨宏伟). Study on the Exchange Behavior of Phosphorus and Heavy Metals in the Particulate Matter—Water Interface of Yellow River(黄河颗粒物——水体磷和重金属的交换行为研究). Beijing: China Environmental Sciences Press(北京: 中国环境科学出版社), 2013.
[5] Froelich R N. Limnol. Oceanogr., 1988, 33: 649.
[6] CHEN Juan-juan, GE Cheng-feng, JI Hong-wei, et al(陈娟娟, 葛成凤, 姬泓巍, 等). Periodical of Ocean University of China(中国海洋大学学报·自然科学版), 2015, 3: 79.
[7] SHI Xiao-yong, SHI Zhi-li(石晓勇, 史致丽). Oceanologia et Limnologia Sinica(海洋与湖沼), 2000, 4: 441.
[8] Karthikeyan K G, Tshabalala M A, Wang D, et.al. Environ. Sci. Technol., 2004, 38(3): 904.
[9] Zhu H W, Wang D Z, Cheng P D, et al. Science China (Physics, Mechanics & Astronomy), 2015, 58(2): 024702.
[10] Zhang Y, He F, Liu Z S, et al. Ecol. Eng., 2016, 95: 645. |
[1] |
ZHENG Pei-chao, YIN Yi-tong, WANG Jin-mei*, ZHOU Chun-yan, ZHANG Li, ZENG Jin-rui, LÜ Qiang. Study on the Method of Detecting Phosphate Ions in Water Based on
Ultraviolet Absorption Spectrum Combined With SPA-ELM Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 82-87. |
[2] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[3] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[4] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[5] |
HUANG Li, MA Rui-jun*, CHEN Yu*, CAI Xiang, YAN Zhen-feng, TANG Hao, LI Yan-fen. Experimental Study on Rapid Detection of Various Organophosphorus Pesticides in Water by UV-Vis Spectroscopy and Parallel Factor Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3452-3460. |
[6] |
XU Yong-long, XU Yu, KONG Wei-li, ZOU Wen-sheng*. Purely Organic Room Temperature Phosphorescence Activated by Heavy Atom Effect for Photodynamic Antibacteria[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2910-2915. |
[7] |
TANG Yan1, YANG Yun-fan1, HU Jian-bo1, 2, ZHANG Hang2, LIU Yong-gang3*, LIU Qiang-qiang4. Study on the Kinetic Process and Spectral Properties of the Binding of Warfarin to Human Serum Protein[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2099-2104. |
[8] |
ZHU Hong-wei1, CHENG You-fa1, CHEN Shu-xiang2*, FAN Chun-li1, LI Ting1, LIU Hai-bin1, ZHAO Xiao-xue1SHAN Guang-qi1, LI Jian-jun1. Spectroscopic Characteristics of a Natural Diamond Suspected of Synthetic Diamond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1690-1696. |
[9] |
YANG Liu1, GUO Zhong-hui1, JIN Zhong-yu1, BAI Ju-chi1, YU Feng-hua1, 2, XU Tong-yu1, 2*. Inversion Method Research of Phosphorus Content in Rice Leaves Produced in Northern Cold Region Based on WPA-BP[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1442-1449. |
[10] |
WANG Shao-yan1, CHEN Zhi-fei2, LUO Yang1, JIAN Chun-xia1, ZHOU Jun-jie3, JIN Yuan1, XU Pei-dan3, LEI Si-yue3, XU Bing-cheng1, 4*. Study on Nutrient Content of Bothriochloa Ischaemum Community in the Loess Hilly-Gully Region Based on Spectral Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1612-1621. |
[11] |
ZHANG Tie-zhu1, 2, LI Yu3, 4, ZHANG Yu-xuan2, 3, ZHU Xue-feng1, OUYANG Shun-li3*, ZHANG Jin-shan1*. The Crystal Orientation Maps and Distribution of Mnoazite Minerals in Aegirine-Type Ores in Bayan Obo: Constraints From Raman Mapping[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1183-1191. |
[12] |
ZOU Yu-bo1, 2, MA Zhen-yu1, JIAO Qing-bin1, XU Liang1, PEI Jian1, 2, LI Yu-hang1, 2, XU Yu-xing1, 2, ZHANG Jia-hang1, 2, LI Hui1, 2, YANG Lin1, 2, LIU Si-qi1, 2, ZHANG Wei1, 2, TAN Xin1*. Comparative Study on Hyperspectral Inversion Models of Water
Quality Parameters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 949-954. |
[13] |
JIN Wang-jun1, 2, LI Yan1, 2, ZHAO Yue3, MEI Sheng-hua1*. In Situ Raman Study and Kinetic Analysis of Hydrothermal Liquefaction of Glycine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3448-3453. |
[14] |
ZHU Gui-jun, WANG Gan-zhen, PENG Jun*, TIAN Zong-ping, HOU Zhi-hua. The Mineralogical and Spectroscopic Characteristics of Phosphohedyphane From Chenzhou of Hunan Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3017-3023. |
[15] |
WANG Xu-yang1, SUN Tao1, ZHU Xin-ping1, TANG Guang-mu2, JIA Hong-tao1*, XU Wan-li2. Phosphorus Species of Biochar Modified by Phosphoric Acid and
Pyrophosphoric Acid Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3084-3090. |
|
|
|
|