光谱学与光谱分析 |
|
|
|
|
|
Study on the Spectrum Response of Brassica Campestris L Leaf to the Zinc Pollution |
CHEN Si-ning1, LIU Xin-hui1*, HOU Juan1, LIU Su-hong2, CHI Guang-yu1, CUI Bao-shan1, YANG Zhi-feng1 |
1.State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China 2.College of Geography and Remote Sensing Sciences, Beijing Normal University, Beijing 100875, China |
|
|
Abstract In the present paper, the spectrum response of Brassica Campestris L leaf to the stress of heavy metal zinc pollution was studied in three spectral rangess of the red edge position (680-740nm), the visible spectrum (460-680nm) and the near infrared spectrum (750-1000nm). The results indicate that the Zn content in cabbage leaves increases and the chlorophyll level reduces with the increase in Zn concentration in soil. With the Zn content of Brassica Campestris L leaves increasing, the leaf spectral reflectivity in visible light (A1) and the range of red edge shift (S) ascends, the the leaf spectral reflectivity in the near infrared light (A2) decreases. The three indices of A1, A2 and S are fitted much linearly with the logarithm of zinc content in Brassica Campestris L leaves with the high squared regression coefficients of 0.942, 0.981 and 0.969 respectively. The regression models are reliable to estimate the zinc content in Brassica Campestris L leaves.
|
Received: 2006-05-28
Accepted: 2006-09-02
|
|
Corresponding Authors:
LIU Xin-hui
E-mail: xhliu@bnu.edu.cn
|
|
Cite this article: |
CHEN Si-ning,LIU Xin-hui,HOU Juan, et al. Study on the Spectrum Response of Brassica Campestris L Leaf to the Zinc Pollution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2007, 27(09): 1797-1801.
|
|
|
|
URL: |
https://www.gpxygpfx.com/EN/Y2007/V27/I09/1797 |
[1] XIANG Chang-xing, DONG Ya-wen, QIAN Jun-long, et al(项长兴,董雅文,钱君龙, 等). Soil(土壤),1993, 25: 319. [2] MA Xiang-ping, XIAN Mai-long, L Lu-shi, et al(马向平,仙麦龙,吕录仕, 等). Remote Sensing for Land and Resources(国土资源遥感), 1997, 34: 14. [3] TIAN Guo-liang, BAO Pei-li, LI Jian-jun, et al(田国良,包佩丽,李建军, 等). Remote Sensing of Environment(环境遥感), 1990, 5: 140. [4] LIU Sheng-wei, GAN Fu-ping, WANG Run-sheng(刘圣伟,甘甫平,王润生). Remote Sensing for Land and Resources(国土资源遥感), 2004, 59: 6. [5] Mars J C, Crowley J K. Remote Sensing of Environment, 2003, 84: 422. [6] Schuerger A C, Capelle G A, Di Benedetto J A. Remote Sensing of Environment, 2003, 84: 572. [7] MA Chao-fei, MA Jian-wen, HAN Xiu-zhen(马超飞,马建文,韩秀珍). Journal of Remote Sensing(遥感学报), 2001, 5: 334. [8] Hoque E, Huntzler J S. Remote Sensing of Environment, 1992, 39: 81. [9] WANG Ke, SHEN Zhang-quan, WANG Ren-chao(王 珂,沈掌泉,王人潮). Remote Sensing for Land and Resources(国土资源遥感), 1999, 39: 9. [10] AI Tian-cheng, LI Fang-min, ZHOU Zhi-an, et al(艾天成,李方敏,周治安, 等). Journal of Hubei Agricultral College(湖北农学院学报), 2000, 20: 6. [11] XIE Su-jing, XIE Shu-lian, XIE Bao-mei(谢苏婧,谢树莲,谢宝妹). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2003, 23(3): 615. [12] Yang Z M, Hua Y, Li J. Journal of Environmental Science, 1992, 12: 230. [13] Madeira A C, Mendonca A, Ferreira M E, et al. Soil Science and Plant Analysis, 2000, 31: 631. [14] JIANG Ming-yi, YANG Wen-ying, XU Jiang, et al(蒋明义,杨文英,徐 江,等). Journal of Integrative Plant Biology(植物学报), 1994, 36: 289. [15] Somashekaraiah B V, Padmaja K, Prasad R K. Physiologia Plantarum, 1992, 85: 85. [16] Broge N H, J Vmortensen. Remote Sensing of Environment, 2002, 81: 45. [17] Danidl A S, Gamon J A. Remote Sensing of Environment, 2002, 81: 337. [18] Filella I, Penuelas J. International Journal of Remote Sensing, 1994, 15: 1459. |
[1] |
SHEN Si-cong, ZHANG Jing-xue, CHEN Ming-hui, LI Zhi-wei, SUN Sheng-nan, YAN Xue-bing*. Estimation of Above-Ground Biomass and Chlorophyll Content of
Different Alfalfa Varieties Based on UAV Multi-Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3847-3852. |
[2] |
ZHU Zhi-cheng1, WU Yong-feng2*, MA Jun-cheng2, JI Lin2, LIU Bin-hui3*, JIN Hai-liang1*. Response of Winter Wheat Canopy Spectra to Chlorophyll Changes Under Water Stress Based on Unmanned Aerial Vehicle Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3524-3534. |
[3] |
WANG Lin, WANG Xiang*, ZHOU Chao, WANG Xin-xin, MENG Qing-hui, CHEN Yan-long. Remote Sensing Quantitative Retrieval of Chlorophyll a and Trophic Level Index in Main Seagoing Rivers of Lianyungang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3314-3320. |
[4] |
WANG Jing-yong1, XIE Sa-sa2, 3, GAI Jing-yao1*, WANG Zi-ting2, 3*. Hyperspectral Prediction Model of Chlorophyll Content in Sugarcane Leaves Under Stress of Mosaic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2885-2893. |
[5] |
BAI Jie1, 2, NIU Zheng1, 2*, BI Kai-yi1, 2, WANG Ji1, 2, HUANG Yan-ru2, 3, SUN Gang1. Bi-Directional Reflection Characteristic of Vegetation Leaf Measured by Hyperspectral LiDAR and Its Impact on Chlorophyll Content Estimation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1598-1605. |
[6] |
SUN Xi-tong, FU Yun*, HAN Chun-xiao, FAN Yu-hua, WANG Tian-shu. An Inversion Method for Chlorophyll-a Concentration in Global Ocean Through Convolutional Neural Networks[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 608-613. |
[7] |
WANG Yan-cang1, 4, LI Xiao-fang2, LI Li-jie5, LI Nan1, 4*, JIANG Qian-nan1, 4, GU Xiao-he3, YANG Xiu-feng1, 4LIN Jia-lu1, 4. Quantitative Inversion of Chlorophyll Content in Stem and Branch of
Pitaya Based on Discrete Wavelet Differential Transform Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 549-556. |
[8] |
LI Xiao-kai, YU Hai-ye, YU Yue, WANG Hong-jian, ZHANG Lei, ZHANG Xin, SUI Yuan-yuan*. Inversion Model of Clorophyll Content in Rice Based on a Bonic
Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 93-99. |
[9] |
DAI Qian-cheng1, XIE Yong1*, TAO Zui2, SHAO Wen1, PENG Fei-yu1, SU Yi1, YANG Bang-hui2. Research on Fluorescence Retrieval Algorithm of Chlorophyll a Concentration in Nanyi Lake[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3941-3947. |
[10] |
FENG Hai-kuan1, 2, TAO Hui-lin1, ZHAO Yu1, YANG Fu-qin3, FAN Yi-guang1, YANG Gui-jun1*. Estimation of Chlorophyll Content in Winter Wheat Based on UAV Hyperspectral[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3575-3580. |
[11] |
HU Xin-yu1, 2, XU Zhang-hua1, 2, 3, 5, 6*, HUANG Xu-ying1, 2, 8, ZHANG Yi-wei1, 2, CHEN Qiu-xia7, WANG Lin1, 2, LIU Hui4, LIU Zhi-cai1, 2. Relationship Between Chlorophyll and Leaf Spectral Characteristics and Their Changes Under the Stress of Phyllostachys Praecox[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2726-2739. |
[12] |
GUO Jing-jing1, YU Hai-ye1, LIU Shuang2, XIAO Fei1, ZHAO Xiao-man1, YANG Ya-ping1, TIAN Shao-nan1, ZHANG Lei1*. Study on the Hyperspectral Discrimination Method of Lettuce Leaf
Greenness[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2557-2564. |
[13] |
FENG Tian-shi1, 2, 3, PANG Zhi-guo1, 2, 3*, JIANG Wei1, 2, 3. Remote Sensing Retrieval of Chlorophyll-a Concentration in Lake Chaohu Based on Zhuhai-1 Hyperspectral Satellite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2642-2648. |
[14] |
ZHANG Jun-yi1, 2, GAO De-hua1, SONG Di1, QIAO Lang1, SUN Hong1, LI Min-zan1*, LI Li1. Wavelengths Optimization and Chlorophyll Content Detection Based on PROSPECT Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1514-1521. |
[15] |
ZHANG Zhao1, 2, 3, 4, YAO Zhi-feng1, 3, 4, WANG Peng1, 3, 4, SU Bao-feng1, 3, 4, LIU Bin3, 4, 5, SONG Huai-bo1, 3, 4, HE Dong-jian1, 3, 4*, XU Yan5, 6, 7, HU Jing-bo2. Early Detection of Plasmopara Viticola Infection in Grapevine Leaves Using Chlorophyll Fluorescence Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1028-1035. |
|
|
|
|