|
|
|
|
|
|
Design of a Moving Mirror Scanning System for Portable Interferometer |
LIANG Xiao-wen1, SHI Lei2* |
1. School of Electrical Engineering, Wuhan University, Wuhan 430079, China
2. Beijing SDL Technology Co., Ltd., Beijing 102206, China |
|
|
Abstract The movable mirror is used to distinguish optical path difference in a continuous scanning FTIR. Moving mirror scanning system is the only moving part in FTS, the accuracy of scan and the distance of scan, would affect the signal to noise ratio (SNR), repeatability and resolution of the instrument directly. A moving mirror scanning system that based on flex cross-spring pivots were designed, and a fuzzy controller was designed to ensure that the movement of the moving mirror system is collimated, uniform and smooth,with the control accuracy up to 99.8%.
|
Received: 2015-11-02
Accepted: 2016-04-10
|
|
Corresponding Authors:
SHI Lei
E-mail: 998sl@sina.com
|
|
[1] Marcandre S, Francios C, Chistophe D, et al. Earth Observing Systems, 2002, 4814(7): 70.
[2] Alexander S. Applied Optics, 1977, 16(5): 1412.
[3] SHI Lei, LIU Jia, GAO Wu, et al(石 磊,刘 佳,郜 武,等). Acta Photonica Sinica(光子学报), 2015, 44(4): 182.
[4] CHU Xiao-li(褚小立). Molecular Spectroscopy Analytical Technology Combined with Chemometrics and Its Applications(化学计量学方法与分子光谱分析技术). Beijing: Chemical Industry Press(北京:化学工业出版社), 2011.
[5] XIANGLI Bin(相里斌). Acta Photonica Sinica(光子学报), 1997, 26(6): 550.
[6] Onillon E, Henein, S, Theurillat P. Small Scanning Mirror Mechanism. Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003. 1129.
[7] Jensen B D, Howell L L. Mech. Mach. Theory, 2002, 37(5): 461.
[8] LI Sheng, ZHANG Yu-jun, GAO Min-guang, et al(李 胜,张玉钧,高闽光,等). Infrared Technology(红外技术), 2012, 34(1): 48.
[9] WANG Ji-wu, CHEN Ken, LI Jia, et al(王纪武,陈 恳,李 嘉,等). Journal of Tsinghua University·Science and Technology(清华大学学报·自然科学版), 2001, 41(11): 49.
[10] Sadowski N, Carlson R, Beckert A, et al. IEEE Transactions on Magnetics, 1996, 32(3): 1633.
[11] REN Li-bing, YANG Hong-lei, WEI Hao-yun, et al(任利兵, 杨宏雷, 尉昊赟, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2013, 33(8): 2263. |
[1] |
XU Qi-lei, GUO Lu-yu, DU Kang, SHAN Bao-ming, ZHANG Fang-kun*. A Hybrid Shrinkage Strategy Based on Variable Stable Weighted for Solution Concentration Measurement in Crystallization Via ATR-FTIR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1413-1418. |
[2] |
KAN Yu-na1, LÜ Si-qi1, SHEN Zhe1, ZHANG Yi-meng1, WU Qin-xian1, PAN Ming-zhu1, 2*, ZHAI Sheng-cheng1, 2*. Study on Polyols Liquefaction Process of Chinese Sweet Gum (Liquidambar formosana) Fruit by FTIR Spectra With Principal Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1212-1217. |
[3] |
YAN Li-dong1, ZHU Ya-ming1*, CHENG Jun-xia1, GAO Li-juan1, BAI Yong-hui2, ZHAO Xue-fei1*. Study on the Correlation Between Pyrolysis Characteristics and Molecular Structure of Lignite Thermal Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 962-968. |
[4] |
LI Zong-xiang1, 2, ZHANG Ming-qian1*, YANG Zhi-bin1, DING Cong1, LIU Yu1, HUANG Ge1. Application of FTIR and XRD in Coal Structural Analysis of Fault
Tectonic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 657-664. |
[5] |
CHENG Xiao-xiao1, 2, LIU Jian-guo1, XU Liang1*, XU Han-yang1, JIN Ling1, SHEN Xian-chun1, SUN Yong-feng1. Quantitative Analysis and Source of Trans-Boundary Gas Pollution in Industrial Park[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3762-3769. |
[6] |
ZHANG Hao1, 2, HAN Wei-sheng1, CHENG Zheng-ming3, FAN Wei-wei1, LONG Hong-ming2, LIU Zi-min4, ZHANG Gui-wen5. Thermal Oxidative Aging Mechanism of Modified Steel Slag/Rubber Composites Based on SEM and FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3906-3912. |
[7] |
CHEN Jing-yi1, ZHU Nan2, ZAN Jia-nan3, XIAO Zi-kang1, ZHENG Jing1, LIU Chang1, SHEN Rui1, WANG Fang1, 3*, LIU Yun-fei3, JIANG Ling3. IR Characterizations of Ribavirin, Chloroquine Diphosphate and
Abidol Hydrochloride[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2047-2055. |
[8] |
MA Fang1, HUANG An-min2, ZHANG Qiu-hui1*. Discrimination of Four Black Heartwoods Using FTIR Spectroscopy and
Clustering Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1915-1921. |
[9] |
ZHANG Dian-kai1, LI Yan-hong1*, ZI Chang-yu1, ZHANG Yuan-qin1, YANG Rong1, TIAN Guo-cai2, ZHAO Wen-bo1. Molecular Structure and Molecular Simulation of Eshan Lignite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1293-1298. |
[10] |
WANG Fang-fang1, ZHANG Xiao-dong1, 2*, PING Xiao-duo1, ZHANG Shuo1, LIU Xiao1, 2. Effect of Acidification Pretreatment on the Composition and Structure of Soluble Organic Matter in Coking Coal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 896-903. |
[11] |
HU Chao-shuai1, XU Yun-liang1, CHU Hong-yu1, CHENG Jun-xia1, GAO Li-juan1, ZHU Ya-ming1, 2*, ZHAO Xue-fei1, 2*. FTIR Analysis of the Correlation Between the Pyrolysis Characteristics and Molecular Structure of Ultrasonic Extraction Derived From Mid-Temperature Pitch[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 889-895. |
[12] |
YANG Jiong1, 2, QIU Zhi-li1, 4*, SUN Bo3, GU Xian-zi5, ZHANG Yue-feng1, GAO Ming-kui3, BAI Dong-zhou1, CHEN Ming-jia1. Nondestructive Testing and Origin Traceability of Serpentine Jade From Dawenkou Culture Based on p-FTIR and p-XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 446-453. |
[13] |
HE Xiong-fei1, 2, HUANG Wei3, TANG Gang3, ZHANG Hao3*. Mechanism Investigation of Cement-Based Permeable Crystalline Waterproof Material Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3909-3914. |
[14] |
ZHOU Jing1,2, ZHANG Qing-qing1,2, JIANG Jin-guo2, NIE Qian2, BAI Zhong-chen1, 2*. Study on the Rapid Identification of Flavonoids in Chestnut Rose (Rosa Roxburghii Tratt) by FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3045-3050. |
[15] |
Samy M. El-Megharbel*,Moamen S. Refat. In First Time: Synthesis and Spectroscopic Interpretations of Manganese(Ⅱ), Nickel(Ⅱ) and Mercury(Ⅱ) Clidinium Bromide Drug Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3316-3320. |
|
|
|
|