光谱学与光谱分析 |
|
|
|
|
|
Research Progress of Far Field Light Scattering Spectra of Single Gold Nanorods |
YANG Yu-dong |
School of Science, Shenyang University of Technology, Shenyang 110870, China |
|
|
Abstract The far-field optical technology of single gold-nanorod(AuNR) has attracted a great deal of attention in recent years. Because of special local surface plasmon resonance (LSPR) property, AuNR particles have high conductivity of optical signals localized on the surface from physical or chemical irritants. The mechanism, application, progress and novel optical characteristics of AuNRs in optical detection and spectroscopy method are being reviewed in our work. The paper describes an overall introduction as follows: (1)various related technologies on AuNR scattered spectrum, including dark-field technology, homodyne and heterodyne technology, photonic crystal technology, spatial modulation, polarization modulation technology,etc; (2) the properties of AuNR scattered spectrum, including spectral line-shape functions, effects of line-width and substrate, comparison of theoretical and experimental spectrums,etc; (3) the development of related spectrum technologies in recent years. The paper focuses on the method of far-field optical scattering based on LSPR and mainly discusses the linear method based on AuNRs, such as direct and indirect scattering detection method. We also put emphasis upon studying the importance of medium environment (for example, substrate, the molecules combined on surface and other nanomaterials) and the influence on scattered spectrum and the extinction rate. Of particular note is the quantitative method and correlation studies of AuNR’s surface and morphology, and its character is that most of the methods are compared with theoretical model and experiments in terms of accuracy. The combination of the experiments and theoretical tools can be used to explain the optical properties of single gold-nanorod particle in detail
|
Received: 2015-12-06
Accepted: 2016-04-11
|
|
Corresponding Authors:
YANG Yu-dong
E-mail: songzx07@163.com
|
|
[1] YANG Yu-dong, LIU Gong-zhao, LI Dong-zhi, et al(杨玉东, 刘公召, 李冬至, 等). Chin. Sci. Bull.(科学通报), 2015, 60(9): 817. [2] YANG Yu-dong, LIU Gong-zhao, LI Dong-zhi, et al(杨玉东, 刘公召, 李冬至, 等). Scientia Sinica Chimica(中国科学: 化学), 2015, 45(10): 1010. [3] JIANG Si-wen, LI Xia, ZHANG Yue-jiao, et al(蒋思文, 李 霞, 张月皎, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(1): 99. [4] YANG Yu-dong, LIU Gong-zhao, XU Jing-hua, et al(杨玉东, 刘公召, 徐菁华, 等). Scientia Sinica Chimica(中国科学: 化学), 2015, 45(6): 581. [5] Xiao L, Yeung E S. Ann. Rev. Anal. Chem., 2014, 7: 89. [6] Xu D, He Y, Yeung E S. Anal. Chem., 2014, 86: 3397. [7] Chaudhari K, Pradeep T. Sci. Rep., 2014, 4: 5948. [8] Wackenhut F, Failla A V, Meixner A J. Phys. Chem. Chem. Phys., 2013, 15(15): 5407. [9] Wackenhut F, Failla A V, Meixner A J. Anal. Bioanal. Chem., 2015, 407(14): 4029. [10] Gu Y, Wang G, Fang N. ACS Nano, 2013, 7: 1658. [11] Chen K, Lin C C, Vela J, et al. Anal. Chem., 2015, 87: 4096. [12] Zhuo Y, Hu H, Chen W, et al. Analyst, 2014, 139(5): 1007. [13] Devadas M S, Devkota T, Johns P, et al. Nanotechnology, 2015, 26(35): 354001. [14] Davletshin Y R, Lombardi A, Cardinal M F, et al. ACS Nano, 2012, 6(9): 8183. [15] Li Z, Mao W, Devadas M S S. Hartl. Nano Lett., 2015, 15(11): 7731. [16] Juvé V, Cardinal M F, Lombardi A, et al. Nano Lett., 2013, 13(5): 2234. [17] Zijlstra P, van Stee M, Verhart N, et al. Phys. Chem. Chem. Phys., 2012, 14(13): 4584. [18] Zijlstra P, Paulo P M R, Yu K, et al. Angew. Chem., 2012, 124(33): 8477. [19] Grigorchuk N I. J. Opt. Soc. Am. B, 2012, 29: 3404. [20] Lombardi A, Loumaigne M, Crut A, et al. Langmuir, 2012, 28:9027. [21] Chen X, Yang Y, Chen Y H, et al. J. Phys. Chem. C, 2015, 119(32): 18627. |
[1] |
GUO Wei1, CHANG Hao2*, XU Can3, ZHOU Wei-jing2, YU Cheng-hao1, JI Gang2. Effect of Continuous Laser Irradiation on Scattering Spectrum
Characteristics of GaAs Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3674-3681. |
[2] |
JIANG Chun-xu1, 2, TAN Yong1*, XU Rong3, LIU De-long4, ZHU Rui-han1, QU Guan-nan1, WANG Gong-chang3, LÜ Zhong1, SHAO Ming5, CHENG Xiang-zheng5, ZHOU Jian-wei1, SHI Jing1, CAI Hong-xing1. Research on Inverse Recognition of Space Target Scattering Spectral
Image[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3023-3030. |
[3] |
DENG Chen-yang, LIAO Ning-fang*, LI Ya-sheng, LI Yu-mei. Reconstruction of Spectral Bidirectional Reflectance Distribution Function for Metallic Coatings Based on Additivity of Scattering Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2043-2049. |
[4] |
SHI Jing1, 2, TAN Yong1, CHEN Gui-bo1, LI Shuang1, CAI Hong-xing1*. Inversion of Object Materials and Their Proportions Based on
Scattering Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2340-2346. |
[5] |
ZHOU Bing1, LIU Tian-shu2, MU Shuo2, WANG Peng-jie2, SHEN Qing-wu1, LUO Jie1, 2*. Using Spectroscopy Methods to Analyze the Key Textural Characteristics of Fermented Milk With High Creaminess Intensity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1194-1198. |
[6] |
SHANG Jie1, 2, HUANG Yuan2, YANG Kai1, CHEN Bao-wei1, LIU Chun-hua2, YANG Yi1. Progress of Thomson Scattering Diagnostic on HL-2A Tokamak[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 333-338. |
[7] |
DAI Li-juan1, DING Le-ming1, LI Wei-tao2, QIAN Zhi-yu2. Study on the Application of Scattering Spectrum With Small Source-Detector Separation in Pain Measurement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3743-3747. |
[8] |
LI Peng1, LI Zhi2, XU Can2, FANG Yu-qiang2. Research on the Scattering Spectrum of GaAs-Based Triple-Junction Solar Cell Based on Thin-Film Interference Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3092-3097. |
[9] |
FENG Cai-ping1, SUI Xiao-feng1, CHEN Chong2, GUO Hui-yuan2, WANG Peng-jie2*. Spectroscopic Analysis of Effect of Sodium Citrate on the Properties of Transglutaminase Goat’s Milk Gels[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2505-2510. |
[10] |
DAI Li-juan1,JIA Wei-wei1,QIAN Ai-ping1,HUA Guo-ran1,QIAN Zhi-yu2. Real-Time Identification of Tissue’s Thermal Damage Level Based on Near Infrared Scattering Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3083-3087. |
[11] |
WANG Jiu-yue, ZHAO Nan-jing*, DUAN Jing-bo, MENG De-shuo, FANG Li, YANG Rui-fang, XIAO Xue, YIN Gao-fang, MA Ming-jun, LIU Jian-guo, LIU Wen-qing . Rapid Quantitative Detection of Bacterial in Water Based on Multi-Wavelength Scattering Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(02): 333-337. |
[12] |
PANG Hui-fang1,2, WANG Lin2*, JIANG Ling-ling1, CHEN Yan-long2, WANG Bing-qiang3, XIONG De-qi1 . Separation of Chlorophyll Fluorescence from Scattering Light of Algal Water Based on the Polarization Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(02): 486-490. |
[13] |
CHEN Wei-kang1, FANG Hui2* . Particle Size and Number Density Online Analysis for Particle Suspension with Polarization-Differentiation Elastic Light Scattering Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(03): 770-774. |
[14] |
WANG Wei, PAN Zhi-feng*, TANG Wei-yue, LI Yun-tao, FAN Chun-zhen . Research on Early Diagnosis of Gastric Cancer by the Surface Enhanced Raman Spectroscopy of Human Hemoglobin [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(12): 3402-3405. |
[15] |
SONG Wei1, FENG Shi-qi1, SHI Jing1, XU Rong2, WANG Gong-chang2, LI Bin-yu1, LIU Yu1, LI Shuang1, CAO Rui1, CAI Hong-xing1, ZHANG Xi-he1, TAN Yong1*. Research of Identify Spatial Object Using Spectrum Analysis Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(06): 1464-1468. |
|
|
|
|