光谱学与光谱分析 |
|
|
|
|
|
Micro-Raman Spectra for Gastritis and Gastric Ulcer Tissues |
WANG Hui-min1, ZHANG Jin-yan1, GUO Jian-yu1, CAI Wei-ying1, SUN Zhen-rong1*, WANG Zu-geng1, FANG Min2, SUN Man-ping2, MA Shu-ying2 |
1. Key Laboratory of Optical and Magnetic Resonance Spectroscopy (East China Normal University), Ministry of Education, and Department of Physics, East China Normal University, Shanghai 200062, China 2. Yue-yang Hospital of Traditional Chinese & Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China |
|
|
Abstract Micro-Raman spectroscopy was employed to identify gastritis tissues and gastric ulcer tissues. The primary spectral differences between the two types of samples include, for gastric ulcer tissues, (1) the intensity of the peak at 781 cm-1 ascribed to cytosine decreases, while the peaks ascribed to adenine and thymine respectively at 793 and 823cm-1 become stronger; (2) the bands of amide Ⅰ and amide Ⅲ at 1654 and 1320-1270cm-1 respectively, characteristic of α-helix structural protein, lose their intensities, and the tryptophan band at 1332cm-1 and phenylalanine band at 1003cm-1 reduced significantly, while the tryptophan marker at 1554cm-1 up shiftes to 1556cm-1 with increasing intensity; (3) a blue shift of 1073cm-1 line, the characteristic Raman band of lipid, and a reduction in the ratio of 1303 cm-1 assigned to in-phase CH2 twisting motion to 1268cm-1 from CH in-plane deformation were observed; (4)statistic analysis shows that the ratio of Raman intensities at bands 1449 cm-1 originating from CH2 group to 1660cm-1 from amideⅠ provides a promising standard to distinguish the two tissues.
|
Received: 2006-05-08
Accepted: 2006-09-23
|
|
Corresponding Authors:
SUN Zhen-rong
E-mail: zrsun@phy.ecnu.edu.cn
|
|
Cite this article: |
WANG Hui-min,ZHANG Jin-yan,GUO Jian-yu, et al. Micro-Raman Spectra for Gastritis and Gastric Ulcer Tissues[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2007, 27(10): 2038-2041.
|
|
|
|
URL: |
https://www.gpxygpfx.com/EN/Y2007/V27/I10/2038 |
[1] Sureau F, Chinsky L, Amirand C, et al. Applied Spectroscopy, 1990, 44: 1047. [2] Petra R, Michaela H, Michael S, et al. Applied and Environmental Microbiology, 2005, 71: 1626. [3] Otto C, Grauw C J, Duindam J J, et al. J. Raman Spectroscopy, 1997, 28: 143. [4] Krishna C M, Ganesh D S, Gregory K, et al. Vibrational Spectroscopy, 2005, 38: 95. [5] Zhiwei H, Annette M, Harvey L. Int. J. Cancer, 2003, 107: 1047. [6] David P L, Zhiwei H, Harvey L, et al. Lasers in Surgery and Medicine, 2003, 32: 210. [7] Ong C W, Shen Z X, He Y. J. Raman Spectroscopy, 1999, 30: 91. [8] Ramasamy M, Yang W, Michael S F. Spectrochimica Acta Part A, 1996, 52: 215. [9] Karen E, Shafer P, Abigail S H, et al. J. Raman Spectroscopy, 2002, 33: 552. [10] Shoji K, Toshiaki I, Hiroya Y, et al. J. Raman Spectroscopy, 2002, 33: 498. [11] Nicholas S, Catherine K, Neil S, et al. J. Raman Spectroscopy, 2002, 33: 564. [12] Hiroshi O, Shintaro K, Noriko Y. Int. J. Cancer, 2004, 109: 138. [13] LING Xiao-feng, LI Wei-hong, SONG Yuan-yuan, et al(凌晓峰, 李维红, 宋苑苑, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2000, 20(5): 692. [14] YU Ge, XU Xiao-xuan, NIU Yun, et al(于 舸, 徐晓轩, 牛 昀, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2004, 24(11): 1359. [15] LUO Lei, ZHAO Yuan-li, GE Xiang-hong, et al(罗 磊, 赵元黎, 葛向红, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2006, 26(6): 1076. [16] ZHAO Yuan-li, L Jing, GE Xiang-hong, et al(赵元黎, 吕 晶, 葛向红, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2006, 26(7): 1267. [17] Stacy A O, George J T. J. Raman Spectroscopy, 1998, 29: 23. [18] Joseph R P, Christine A G, Thomas G S. J. Phys. Chem., 1989, 93: 5672. [19] Anthony T T. Raman Spectroscopy in Biology: Principles and Applications, 1993. |
[1] |
WANG Yu-chen1, 2, KONG Ling-qin1, 2, 3*, ZHAO Yue-jin1, 2, 3, DONG Li-quan1, 2, 3*, LIU Ming1, 2, 3, HUI Mei1, 2. Hyperspectral Reconstruction From RGB Images for Tissue Oxygen
Saturation Assessment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3193-3201. |
[2] |
LIU Jin, FU Run-juan, HAN Tong-shuai*, LIU Rong, SUN Di. Spectral Analysis of Human Tissues Based on a Direct Effective
Attenuation Coefficient Measurement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2746-2751. |
[3] |
REN Yue-ying2, NIU Chen1, 2, WANG Jing-jing1, 2, YANG He1, 2, XU Yong-hua1, 2*, LIU Zhi2*. Effects of Different Light Qualities on Growth and Ginsenoside Contents in Callus of Panax ginseng[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1318-1322. |
[4] |
YU Fan1, LI He-ping1, ZHAO Tian-yu1, LIANG Zhuo-wen2, ZHAO Hang1, WANG Shuang1*. Deep-Surface Analysis of Multi-Layered Turbid Samples Using Inverse Spatially Offset Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3456-3461. |
[5] |
XU Yu-ting1, SUN Hao-ran2, GAO Xun1*, GUO Kai-min3*, LIN Jing-quan1. Identification of Pork Parts Based on LIBS Technology Combined With PCA-SVM Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3572-3576. |
[6] |
ZHAO Sen, LIANG Xiao-tian, YU Meng-ke, CAI Jing*. Study on the Inspection of Shooting Residues by Micro-Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3142-3146. |
[7] |
YU Xiao1, YANG Fan1, DING Xue-fei2. Investigation of the Influence of Water Content in Skin Tissue on Terahertz Spectral Parameters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 835-841. |
[8] |
WANG Lu-lu1, LIU Lei1, LI Pan2, WANG Jie3,4, HE Lu3,4, WU Zi-jian3,4*, YANG Liang-bao2, HU Ling4. Surface-Enhanced Raman Spectroscopy Analysis on the Serum, Muscular and Synovial Tissue of the Knee in Knee Osteoarthritis Model Rats[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2751-2755. |
[9] |
FENG Long1, SUN Cun-ju2, BI Wen-si3, REN Zhen-zhen3, LIU Xing-e1, JIANG Ze-hui1, MA Jian-feng1*. The Distribution and Orientation of Cell Wall Components of Moso Bamboo Parenchyma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2957-2961. |
[10] |
ZHOU Liang1, YU Jiang-jun1, 2, LIU Zhao-hui1, LI Zhi-guo1, SHAN Qiu-sha1. Simulation Study on Spectral Characteristics of Skin Tissue and Volume Pulse Wave in 400~1 000 nm Wavelength[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(04): 1071-1075. |
[11] |
YI Ding-rong1, ZHAO Yan-li1, KONG Ling-hua2*, WANG Wen-qi1, HUANG Cai-hong1. Miniature Snapshot Narrow Band Multi-Spectral Imaging Technology for Cervical Cancer Screening[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(01): 157-161. |
[12] |
LAN Wei-qing1, 2, 3, HU Xiao-yu3, RUAN Dong-na1*, LIU Shu-cheng2, XIE Jing3*. Effects of Carrageenan Oligosaccharides on the Protein Structure of Litopenaeus Vannamei by Fourier Transform Infrared and Micro-Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(08): 2507-2514. |
[13] |
SUN Qi-xuan, WEI Xing, LIU Xun, YANG Ting, CHEN Ming-li*, WANG Jian-hua*. Atomic Spectrometry/Elemental Mass Spectrometry in Bioanalytical Chemistry: A Review[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(05): 1340-1345. |
[14] |
ZHANG Yi1,2, HUANG Ping-jie1,2*, GE Wei-ting1,2, CAO Yu-qi1,2, HOU Di-bo1,2, ZHANG Guang-xin1,2. Human Gastric Tubular Adenocarcinoma Tissue Detection Based on Terahertz Time Domain Spectroscopy and Tissue Microarray Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(02): 397-405. |
[15] |
FAN Xiao-dong1, QIU Bo1*, LIU Yuan-yuan1, WEI Shi-ya1, DUAN Fu-qing2*. A Photometric Redshift Estimation Algorithm Based on the BP Neural Network Optimized by Genetic Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2374-2378. |
|
|
|
|