光谱学与光谱分析 |
|
|
|
|
|
Study on the Color Determination of Tomato Leaves Stressed by the High Temperature Based on Hyperspectral Imaging |
XIE Chuan-qi1, 2, SAHO Yong-ni1, GAO Jun-feng1, HE Yong1* |
1. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China 2. Agricultural and Biological Engineering Department, University of Florida, Gainesville, Florida 32611, USA |
|
|
Abstract Determination of color values on tomato leaves stressed by the high temperature using hyperspectral imaging technique was studied in this paper. Hyperspectral images of sixty healthy and sixty unhealthy tomato leaves in the wavelengths of 380~1 023 nm were acquired by the hyperspectral imaging system. Simultaneously, three color parameters (L*, a* and b*) were measured by a colorimeter. Reflectance of all pixels in the region of interest (ROI) was extracted from the corrected hyperspectral image. Partial Least Squares (PLS) models were established based on different preprocessing methods. Successive Projections Algorithm (SPA) was identified to select effective wavelengths. Finally, Partial Least Squares-Discriminant Analysis (PLS-DA) models were built to classify different types of samples. The results showed that the determination coefficient (R2) were 0.818, 0.109 and 0.896 in the prediction sets of PLS modes; 0.591, 0.244 and 0.673 in the prediction sets of SPA-PLS models. The overall classification accuracy in the prediction sets of PLS-DA models were over 77.50%. It demonstrated that it is feasible to measure color values on tomato leaves and identify different types of samples using hyperspectral imaging technique.
|
Received: 2014-07-27
Accepted: 2014-10-29
|
|
Corresponding Authors:
HE Yong
E-mail: yhe@zju.edu.cn
|
|
[1] Tigist M, Workneh T S, Woldetsadik K. Journal of Food Science and Technology, 2013, 50: 477. [2] Willcox J K, Catignani G L, Lazarus S. Critical Reviews in Food Science and nutrition, 2003, 43: 1. [3] Xie C Q, Li X L, Nie P C, et al. Transactions of the ASABE, 2013, 56: 1431. [4] Zhang X L, Liu F, He Y, et al. Biosystems Engineering, 2013, 115: 56. [5] Cheng J H, Qu J H, Sun D W, et al. Food Research International, 2014, 56: 190. [6] Wu D, Sun D W, He Y. Innovative Food Science and Emerging Technologies, 2012, 16: 361. [7] ElMasry G, Sun D W, Allen P. Journal of Food Engineering, 2012, 110: 127. [8] Huang M, Wang Q G, Zhang M, et al. Journal of Food Engineering, 2014, 128: 24. [9] Iqbal A, Sun D W, Allen P. Journal of Food Engineering, 2013, 117: 42. [10] Jiang L L, Liu F, He Y. Sensors, 2012, 12: 3498. [11] Zou X B, Shi J Y, Hao L M, et al. Analytic Chimica Acta, 2011, 706: 105. [12] Wei X, Liu F, Qiu Z J, et al. Food and Bioprocess Technology, 2014, 7(5): 1371. [13] Wu D, Shi H, Wang S J, et al. Analytic Chimica Acta, 2012, 726: 57. [14] Liu S B, Fu Y Q, Nian S. Food Chemistry, 2014, 162: 16. |
[1] |
LI Yu1, ZHANG Ke-can1, PENG Li-juan2*, ZHU Zheng-liang1, HE Liang1*. Simultaneous Detection of Glucose and Xylose in Tobacco by Using Partial Least Squares Assisted UV-Vis Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 103-110. |
[2] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[3] |
CHU Bing-quan1, 2, LI Cheng-feng1, DING Li3, GUO Zheng-yan1, WANG Shi-yu1, SUN Wei-jie1, JIN Wei-yi1, HE Yong2*. Nondestructive and Rapid Determination of Carbohydrate and Protein in T. obliquus Based on Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3732-3741. |
[4] |
YUAN Wei-dong1, 2, JU Hao2, JIANG Hong-zhe1, 2, LI Xing-peng2, ZHOU Hong-ping1, 2*, SUN Meng-meng1, 2. Classification of Different Maturity Stages of Camellia Oleifera Fruit
Using Hyperspectral Imaging Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3419-3426. |
[5] |
SHEN Ying, WU Pan, HUANG Feng*, GUO Cui-xia. Identification of Species and Concentration Measurement of Microalgae Based on Hyperspectral Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3629-3636. |
[6] |
KANG Ming-yue1, 3, WANG Cheng1, SUN Hong-yan3, LI Zuo-lin2, LUO Bin1*. Research on Internal Quality Detection Method of Cherry Tomatoes Based on Improved WOA-LSSVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3541-3550. |
[7] |
YANG Lei1, 2, 3, ZHOU Jin-song1, 2, 3, JING Juan-juan1, 2, 3, NIE Bo-yang1, 3*. Non-Uniformity Correction Method for Splicing Hyperspectral Imager Based on Overlapping Field of View[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3582-3590. |
[8] |
DONG Jian-jiang1, TIAN Ye1, ZHANG Jian-xing2, LUAN Zhen-dong2*, DU Zeng-feng2*. Research on the Classification Method of Benthic Fauna Based on
Hyperspectral Data and Random Forest Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3015-3022. |
[9] |
CHEN Jia-wei1, 2, ZHOU De-qiang1, 2*, CUI Chen-hao3, REN Zhi-jun1, ZUO Wen-juan1. Prediction Model of Farinograph Characteristics of Wheat Flour Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3089-3097. |
[10] |
JIA Hao1, 3, 4, ZHANG Wei-fang1, 3, LEI Jing-wei1, 3*, LI Ying-ying1, 3, YANG Chun-jing2, 3*, XIE Cai-xia1, 3, GONG Hai-yan1, 3, DING Xin-yu1, YAO Tian-yi1. Study on Infrared Fingerprint of the Classical Famous
Prescription Yiguanjian[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3202-3210. |
[11] |
WEI Zi-kai, WANG Jie, ZHANG Ruo-yu, ZHANG Meng-yun*. Classification of Foreign Matter in Cotton Using Line Scan Hyperspectral Transmittance Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3230-3238. |
[12] |
SUN Bang-yong1, YU Meng-ying1, YAO Qi2*. Research on Spectral Reconstruction Method From RGB Imaging Based on Dual Attention Mechanism[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2687-2693. |
[13] |
WU Yong-qing1, 2, TANG Na1, HUANG Lu-yao1, CUI Yu-tong1, ZHANG Bo1, GUO Bo-li1, ZHANG Ying-quan1*. Model Construction for Detecting Water Absorption in Wheat Flour Using Vis-NIR Spectroscopy and Combined With Multivariate Statistical #br#
Analyses[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2825-2831. |
[14] |
LIU Rui-min, YIN Yong*, YU Hui-chun, YUAN Yun-xia. Extraction of 3D Fluorescence Feature Information Based on Multivariate Statistical Analysis Coupled With Wavelet Packet Energy for Monitoring Quality Change of Cucumber During Storage[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2967-2973. |
[15] |
YANG Dong-feng1, HU Jun2*. Accurate Identification of Maize Varieties Based on Feature Fusion of Near Infrared Spectrum and Image[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2588-2595. |
|
|
|
|