光谱学与光谱分析 |
|
|
|
|
|
An Improved Low Spectral Distortion PCA Fusion Method |
PENG Shi1, ZHANG Ai-wu1, LI Han-lun1, HU Shao-xing2, MENG Xian-gang1, SUN Wei-dong3 |
1. Key Laboratory of 3D Information Acquisition and Application of Ministry of Education, Capital Normal University, Beijing 100048, China 2. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China 3. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China |
|
|
Abstract Aiming at the spectral distortion produced in PCA fusion process, the present paper proposes an improved low spectral distortion PCA fusion method. This method uses NCUT(normalized cut)image segmentation algorithm to make a complex hyperspectral remote sensing image into multiple sub-images for increasing the separability of samples, which can weaken the spectral distortions of traditional PCA fusion; Pixels similarity weighting matrix and masks were produced by using graph theory and clustering theory. These masks are used to cut the hyperspectral image and high-resolution image into some sub-region objects. All corresponding sub-region objects between the hyperspectral image and high-resolution image are fused by using PCA method, and all sub-regional integration results are spliced together to produce a new image. In the experiment, Hyperion hyperspectral data and Rapid Eye data were used. And the experiment result shows that the proposed method has the same ability to enhance spatial resolution and greater ability to improve spectral fidelity performance.
|
Received: 2013-01-10
Accepted: 2013-04-12
|
|
Corresponding Authors:
PENG Shi
E-mail: pengshi1828@163.com
|
|
[1] TONG Qing-xi, ZHANG Bing, ZHENG Lan-fen(童庆禧, 张 兵, 郑兰芬). Hyperspectral Rrmote Sensing—Theory, Technology and Application(高光谱遥感—原理、技术与应用). Beijing: Higher Education Press(北京:高等教育出版社), 2006. [2] Wald L, Ranchin T, Mangolini M. Photogrammetric Engineering and Remote Sensing, 1997, 63: 691. [3] Pohl C, Genderen J L. International Journal of Remote Sensing, 1998, 19(5): 823. [4] Chang Y. Photogrammetric Engineering and Remote Sensing, 2004, 70(6): 657. [5] Chavez P S, Sides S C, Anderson J A. Photogrammetric Engineering and Remote Sensing, 1991, 57(3): 295. [6] YANG Zao-gen, PEI Ji-hong, YANG Wan-hai(杨灶亘, 裴继红, 杨万海). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2002, 21(1):77. [7] Tu Teming, Huang P S, Hung Chungling, et al. IEEE Geoscience and Remote Sensing Letters, 2004, 4(1): 309. [8] Choi Myungjin. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(3): 1672. [9] ZHU Jun-jie, FAN Xiang-tao, DING Chi-biao(朱俊杰, 范湘涛, 丁赤彪). Geomatics and Information Science of Wuhan University(武汉大学学报·信息科学版), 2006, 31(10):858. [10] JIANG Nian-de, WANG Yao-nan, MAO Jian-xu(蒋年德, 王耀南, 毛建旭). Journal of Image and Graphics(中国图象图形学报), 2008, 12(13):2376. [11] ZHU Wei-dong, LI Quan-hai, XU Ke-ke(朱卫东, 李全海, 徐克科). Journal of Tongji University·Natural Science(同济大学学报·自然科学版), 2011, 39(7): 1068. [12] ZHANG Zheng, WANG Yan-ping, XUE Gui-xiang(张 铮, 王艳平, 薛桂香). Digital Image Processing and Machine Vision(数字图像处理与机器视觉). Beiijng: Posts and Telecom Press(北京:人民邮电出版社), 2010. [13] HUAN Ruo-hong, ZHANG Ping, PAN Yun(宦若虹, 张 平, 潘 赟). Journal of Remote Sensing(遥感学报), 2012, 16(2): 262. [14] Shi Jianbo,Malik Jitendra, Member. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888.
|
[1] |
DAI Ruo-chen1, TANG Huan2*, TANG Bin1*, ZHAO Ming-fu1, DAI Li-yong1, ZHAO Ya3, LONG Zou-rong1, ZHONG Nian-bing1. Study on Detection Method of Foxing on Paper Artifacts Based on
Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1567-1571. |
[2] |
ZHOU Bing, LI Bing-xuan*, HE Xuan, LIU He-xiong,WANG Fa-zhen. Classification of Camouflages Using Hyperspectral Images Combined With Fusing Adaptive Sparse Representation and Correlation Coefficient[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3851-3856. |
[3] |
ZHANG Liu1, YE Nan1, MA Ling-ling2, WANG Qi2, LÜ Xue-ying1, ZHANG Jia-bao1*. Hyperspectral Band Selection Based on Improved Particle Swarm Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3194-3199. |
[4] |
YANG Bao-hua1, GAO Yuan1, WANG Meng-xuan1, QI Lin1, NING Jing-ming2. Estimation Model of Polyphenols Content in Yellow Tea Based on Spectral-Spatial Features[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 936-942. |
[5] |
ZHAO Peng1,2*, HAN Jin-cheng1, WANG Cheng-kun1. Wood Species Classification With Microscopic Hyper-Spectral Imaging Based on I-BGLAM Texture and Spectral Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 599-605. |
[6] |
ZHAO Fan, YAN Zhao-ru, XUE Jian-xin, XU Bing. Identification of Wild Black and Cultivated Goji Berries by Hyperspectral Image[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 201-205. |
[7] |
NING Hong-zhang1, 2, TAN Xin1*, LI Yu-hang1, 2, JIAO Qing-bin1, LI Wen-hao1. Joint Space-Spectrum SG Filtering Algorithms for Hyperspectral Images and Its Application[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3699-3704. |
[8] |
ZHANG Yan, HUA Wen-shen*, HUANG Fu-yu, WANG Qiang-hui, SUO Wen-kai. Space-Spectrum Joint Anomaly Degree for Hyperspectral Anomaly Target Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1902-1908. |
[9] |
ZHANG Yi-zhuo, XU Miao-miao, WANG Xiao-hu, WANG Ke-qi*. Hyperspectral Image Classification Based on Hierarchical Fusion of Residual Networks[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(11): 3501-3507. |
[10] |
LU Bing1, 2, SUN Jun1*, YANG Ning1, WU Xiao-hong1, ZHOU Xin1. Prediction of Tea Diseases Based on Fluorescence Transmission Spectrum and Texture of Hyperspectral Image[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(08): 2515-2521. |
[11] |
CAI Qing-kong1, LI Er-jun2, JIANG Jin-bao3*, QIAO Xiao-jun3, JIANG Rui-bo1, FENG Hai-kuan4, 5, 6, LIU Shao-tang1, CUI Xi-min3. Study on the Tea Identification of Near-Infrared Hyperspectral Image Combining Spectra-Spatial Information[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(08): 2522-2527. |
[12] |
LIU Chun-tong, MA Shi-xin*, WANG Hao, WANG Yang, LI Hong-cai. A Density-Based Cluster Kernel RX Algorithm for Hyperspectral Anomaly Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(06): 1878-1884. |
[13] |
HAN Zhong-zhi1, WANG Xuan-hui1,2, SHI Hong-tao1, WAN Jian-hua3*. Mixture End-Members Extraction Method For Coverage Calculation of Sea Oil Spills Based on Hyper-spectral Remote Sensing Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(05): 1563-1570. |
[14] |
GAN Yu-quan1, 2, LIU Wei-hua1, FENG Xiang-peng1, YU Tao1, HU Bing-liang1, WEN De-sheng1. A Sparse Constrained Graph Regularized Nonnegative Matrix Factorization Algorithm for Hyperspectral Unmixing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(04): 1118-1127. |
[15] |
WANG Jie-chao1, 2, 3, SUN Da-peng1, 2, 3, ZHANG Chang-xing1, XIE Feng1, WANG Jian-yu1*. Hyperspectral Image Anomaly Detection Based on Laplasse Constrained Low Rank Representation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(11): 3507-3515. |
|
|
|
|