光谱学与光谱分析 |
|
|
|
|
|
Air Pollutants Study by Differential Optical Absorption Spectroscopy with Transmit-Receive Fibers |
WEI Yong-jie1, GENG Xiao-juan1, CHEN Bo1, LIU Cui-cui1, CHEN Wen-liang2 |
1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China 2. Tianjin Shareshine Science & Technology Co. Ltd.,Tianjin 300457, China |
|
|
Abstract The differential optical absorption spectroscopy system is presented to monitor air pollutants, such as SO2, NO2, etc. The system employs a reflective telescope to collimate light source and focus absorbed light. A combined transmitting and receiving fiber bundle is set to the focus of a concave mirror. A Xenon lamp works as the light source. The light is coupled into the transmitting fiber, and then collimated by the reflective telescope system. After absorbed by the pollutants, the light is reflected by a pyramid mirror far away the telescope. Then the absorbed light is incident on the concave mirror the second time, and focused on the focal plane again. The receiving fiber induces the light which carries the information of the measured gas into a spectrometer. We can get the concentration of the pollutants by DOAS algorithm. Experimental results show that the proposed method can be adopted to measure some pollutants in air quality monitoring.
|
Received: 2013-01-12
Accepted: 2013-04-18
|
|
Corresponding Authors:
WEI Yong-jie
E-mail: yj.wei@163.com
|
|
[1] Sinreich R, Friess U, Wagner T. Faraday Discuss, 2005, 130: 153, 241, 519. [2] Van Roozendael M, Wagner T, Richter A. Space Res., 2002, 29(11): 1661. [3] Fuqi S, Kuze H, Yoshii Y. Atmos. Environ., 2005, 39(27): 4959. [4] Lee H, Ryu J, Kim J. Atmos. Environ., 2011, 45(39): 7218. [5] Platt U, Perner D. Nature,1980, 285: 312. [6] Axelson H, Galle B. Optical Society of America, 1990,(4): 641. [7] WANG Zhuo-ru, ZHOU Bin,WANG Shan-shan, et al(王焯如,周 斌,王珊珊,等). Physics Journal, 2011, 60(6): 1. [8] ZHOU Hai-jin, LIU Wen-qing, SI Fu-qi, et al(周海金,刘文清,司福祺,等). Acta Optica Sinica, 2011, 31(11): 1. [9] LIU Li-hong, BAI Jian-yun, KONG Xiang-jie(刘丽红,白建云,孔祥杰). Journal of Electric Power, 2012, 27(3): 222. [10] Wei Yongjie, Chen Wenliang, Xu Kexin. The Differential Absorption Spectroscopy air Measurement System Combined with Transmitting-Receiving Fibers: China, 201010238277. X, 2011.
|
[1] |
SU Jing-ming1, 2, 3, ZHAO Min-jie1, ZHOU Hai-jin1, YANG Dong-shang1, 2, HONG Yan3, SI Fu-qi1*. On-Orbit Degradation Monitoring of Environmental Trace Gases Monitoring Instrument Based on Level 0 Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 686-691. |
[2] |
XI Liang1,2, SI Fu-qi1*, JIANG Yu1, ZHOU Hai-jin1, QIU Xiao-han1, CHANG Zhen1. Ground-Based IDOAS De-Striping by Weighted Unidirectional Variation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 627-633. |
[3] |
LIU Guo-hua, LI Qi-hua*, OU Jin-ping, XU Heng, ZHU Peng-cheng, LIU Hao-ran. Passive Spectrum Measurement of HCHO in Chongqing Area Based on MAX-DOAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 243-247. |
[4] |
CHENG Liang-xiao1, 2, TAO Jin-hua1*, ZHOU Hai-jin3, YU Chao1, FAN Meng1, WANG Ya-peng4, WANG Zhi-bao5, CHEN Liang-fu1. Evaluations of Environmental Trace Gases Monitoring Instrument (EMI) Level 1 Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3881-3886. |
[5] |
ZHU Peng-cheng1, LIU Hao-ran1*, JI Xiang-guang2, LI Qi-hua1, LIU Guo-hua1, TIAN Yuan1, XU Heng1. Study on Measurement of Troposphereic NO2 in Beijing by MAX-DOAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2153-2158. |
[6] |
JIA Gui-hong1, 2*, ZHANG Jian-jun1, ZHENG Hai-ming2. Research on FFT+FT Spectrum Zooming Method for Differential Optical Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2116-2121. |
[7] |
ZHONG Ming-yu1, 2, 3, ZHOU Hai-jin2, SI Fu-qi2*, WANG Yu2, DOU Ke2, SU Jing-ming1, 2, 3. Reconstruction of Stack Plume Based on Imaging Differential Absorption Spectroscopy and Compressed Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1708-1712. |
[8] |
ZHENG Hai-ming, ZHU Xiao-peng, FENG Shuai-shuai, JIA Gui-hong. Experimental Research on Monitoring of BTX Concentration Based on Differential Optical Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 467-472. |
[9] |
LIU Hao-ran1, HU Qi-hou2*, TAN Wei2, SU Wen-jing3, CHEN Yu-jia2, ZHU Yi-zhi2, LIU Jian-guo2. Study of the Urban NO2 Distribution and Emission Assessment Based on Mobile MAX-DOAS Observations[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 11-19. |
[10] |
LI Xiao-mei1, 2, XIE Pin-hua1, 2, 3*, XU Jin1, LI Ang1, TIAN Xin2, REN Bo2, HU Zhao-kun1, 2, WU Zi-yang2. Aerosol Observation and Research in Hefei by MAX-DOAS Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 712-719. |
[11] |
WU Zi-yang1, 2, XIE Pin-hua1, 2, 3*, XU Jin2, LI Ang2, ZHANG Qiang1, 2, HU Zhao-kun2, LI Xiao-mei2, TIAN Xin1, 2. Study on the Distribution of NO2 Slant Column Density in Atmospheric Boundary Layer of Hefei City Based on Imaging Differential Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 720-726. |
[12] |
HU Zhao-kun1,2, LI Ang1*, XIE Pin-hua1,2,3, WU Feng-cheng1, XU Jin1, YANG Lei1,2, HUANG Ye-yuan1,2. Study on Concentration Distribution Reconstruction Method of Pollution Gas Column[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(09): 2670-2676. |
[13] |
TIAN Xin1,2, XU Jin2, XIE Pin-hua1, 2, 3*, LI Ang2, HU Zhao-kun2, LI Xiao-mei2, REN Bo1,2, WU Zi-yang1,2. Retrieving Tropospheric Vertical Distribution in HCHO by Multi-Axis Differential Optical Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(08): 2325-2331. |
[14] |
WEI Min-hong1,2, LIU Cheng2*, LI Su-wen1, CHEN Zheng-hui1, MOU Fu-sheng1. Measurement of Tropospheric HCHO by MAX-DOAS Based on QDOAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(08): 2332-2336. |
[15] |
HUANG Shan1, 2, SI Fu-qi1*, ZHAO Min-jie1, ZHOU Hai-jin1, JIANG Yu1. Study on the Slit Function of Atmospheric Trace Gas Differential Optical Absorption Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(07): 2008-2012. |
|
|
|
|