光谱学与光谱分析 |
|
|
|
|
|
Preparation of Fluoridated Hydroxyapatite Coatings on Titanium by Electrolytic Deposition and Its FTIR Characteristics |
HUANG Yong1, PANG Xiao-feng1, 2*, LI Gun1, YAN Ya-jing1, HAN Shu-guang1, ZENG Hong-juan1 |
1. Key Laboratory for Neuroinformation of Ministry of Education, Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China 2. International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, China |
|
|
Abstract Fluoridated hydroxyapatite coatings (FHAP) were prepared on titanium substrate by electrochemical deposition technique containing Ca2+, PO3-4, and F- ions. The deposition was all conducted at a constant current of 0.9 mA for 60 min at 60 ℃. The as-prepared coatings were exa mined by scanning electron microscope (SEM), energy-dispersive Xray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and Xray diffraction (XRD) tests. The results indicate that the FHAP cryatals take the morphology of nanoscale-rodlike cone rather than the micron-daisy petal,and the composite coating becomes more compact. The FTIR test indicates that the symmetry of stretching and bending vibration modes of hydroxyl changed,simulated body fluid immersion test proved that the FHAP coating had induced carbonate-apatite formation, indicating that the composite coating possesses excellent biocompatibility.
|
Received: 2012-01-27
Accepted: 2012-04-19
|
|
Corresponding Authors:
PANG Xiao-feng
E-mail: pangxf2006@yahoo.com.cn
|
|
[1] Wang H, Eliaz N, Linn W H, et al. Materials Letters, 2011, 65(15-16): 2455. [2] Tian A, Xue X X, Liu C W, et al. Materials Letters, 2010, 64(10): 1197. [3] Zhang S, Zeng X T, Wang Y S, et al. Surface & Coating Techology, 2006, 200(22-23): 6350. [4] Barinov S M, Tumanov, Fadeeva I V, et al. Inorganic Materials, 2003, 39(8): 877. [5] Lee E J, Lee S H, Kim H W, et al. Biomaterials, 2005, 26(18): 3843. [6] CHAI A-li, LI Bao-ju, SHI Yan-xia, et al (柴阿丽,李宝聚,石延霞,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2011, 31(6): 1506. [7] Lin D Y, Wang X X, Jiang Y. Journal of Biomedical Materials Research B, 2011, 96B(1): 1. [8] Wang J, Chao Y L, Wan Q B, et al. Acta Biomaterials, 2009, 5(5): 1798. [9] Ge X, Leng Y, Bao C Y, et al. Journal of Biomedical Materials Research A, 2010, 95A(2): 588. [10] Ge X, Leng Y, Ren F Z, et al. Journal of The Mechanical Behavior of Biomedical Materials, 2011, 4(7): 1046. [11] Li J N, Song Y, Zhang S X, et al. Biomaterials, 2010, 31(22): 5782. [12] Song Y, Zhang S X, Li J N, et al. Acta Biomaterials, 2010, 6(5): 1736. [13] Li J N, Cao L, Song Y, et al. Bioinorganic Chemistry and Applications, 2011, 10: 1155. [14] HUANG Yong, PANG Xiao-feng, CAO Yu(黄 勇, 庞小峰, 曹 郁). Chinese Patent CN 201010220366. 1. [15] HE Cong-jun, HUANG Yong, CAO Yu, et al(何从军, 黄 勇, 曹 郁, 等). Electroplating and Finishing(电镀与涂饰), 2011, 30(6): 73. [16] Kokubo T, Takadama H. Biomaterials, 2006, 27(15): 2907. [17] Cavalli M, Gnappi G, Montenero A, et al. Journal Material Science, 2001, 36(13): 3253. [18] Zhu Q X, Jiang W H, Wang H D, et al. Journal of Inorganic Materials, 2011, 26(12): 1335. [19] Towler M R, Gibson I R, Best S M. Journal of Science Letters, 2000, 19(24): 2209. [20] Ding S J, Lee T L, Chu Y H. Journal of Material Science Letters, 2003, 22(6): 479. |
[1] |
XU Qi-lei, GUO Lu-yu, DU Kang, SHAN Bao-ming, ZHANG Fang-kun*. A Hybrid Shrinkage Strategy Based on Variable Stable Weighted for Solution Concentration Measurement in Crystallization Via ATR-FTIR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1413-1418. |
[2] |
KAN Yu-na1, LÜ Si-qi1, SHEN Zhe1, ZHANG Yi-meng1, WU Qin-xian1, PAN Ming-zhu1, 2*, ZHAI Sheng-cheng1, 2*. Study on Polyols Liquefaction Process of Chinese Sweet Gum (Liquidambar formosana) Fruit by FTIR Spectra With Principal Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1212-1217. |
[3] |
YAN Li-dong1, ZHU Ya-ming1*, CHENG Jun-xia1, GAO Li-juan1, BAI Yong-hui2, ZHAO Xue-fei1*. Study on the Correlation Between Pyrolysis Characteristics and Molecular Structure of Lignite Thermal Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 962-968. |
[4] |
LI Zong-xiang1, 2, ZHANG Ming-qian1*, YANG Zhi-bin1, DING Cong1, LIU Yu1, HUANG Ge1. Application of FTIR and XRD in Coal Structural Analysis of Fault
Tectonic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 657-664. |
[5] |
CHENG Xiao-xiao1, 2, LIU Jian-guo1, XU Liang1*, XU Han-yang1, JIN Ling1, SHEN Xian-chun1, SUN Yong-feng1. Quantitative Analysis and Source of Trans-Boundary Gas Pollution in Industrial Park[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3762-3769. |
[6] |
ZHANG Hao1, 2, HAN Wei-sheng1, CHENG Zheng-ming3, FAN Wei-wei1, LONG Hong-ming2, LIU Zi-min4, ZHANG Gui-wen5. Thermal Oxidative Aging Mechanism of Modified Steel Slag/Rubber Composites Based on SEM and FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3906-3912. |
[7] |
CHEN Jing-yi1, ZHU Nan2, ZAN Jia-nan3, XIAO Zi-kang1, ZHENG Jing1, LIU Chang1, SHEN Rui1, WANG Fang1, 3*, LIU Yun-fei3, JIANG Ling3. IR Characterizations of Ribavirin, Chloroquine Diphosphate and
Abidol Hydrochloride[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2047-2055. |
[8] |
MA Fang1, HUANG An-min2, ZHANG Qiu-hui1*. Discrimination of Four Black Heartwoods Using FTIR Spectroscopy and
Clustering Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1915-1921. |
[9] |
ZHANG Dian-kai1, LI Yan-hong1*, ZI Chang-yu1, ZHANG Yuan-qin1, YANG Rong1, TIAN Guo-cai2, ZHAO Wen-bo1. Molecular Structure and Molecular Simulation of Eshan Lignite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1293-1298. |
[10] |
WANG Fang-fang1, ZHANG Xiao-dong1, 2*, PING Xiao-duo1, ZHANG Shuo1, LIU Xiao1, 2. Effect of Acidification Pretreatment on the Composition and Structure of Soluble Organic Matter in Coking Coal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 896-903. |
[11] |
HU Chao-shuai1, XU Yun-liang1, CHU Hong-yu1, CHENG Jun-xia1, GAO Li-juan1, ZHU Ya-ming1, 2*, ZHAO Xue-fei1, 2*. FTIR Analysis of the Correlation Between the Pyrolysis Characteristics and Molecular Structure of Ultrasonic Extraction Derived From Mid-Temperature Pitch[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 889-895. |
[12] |
YANG Jiong1, 2, QIU Zhi-li1, 4*, SUN Bo3, GU Xian-zi5, ZHANG Yue-feng1, GAO Ming-kui3, BAI Dong-zhou1, CHEN Ming-jia1. Nondestructive Testing and Origin Traceability of Serpentine Jade From Dawenkou Culture Based on p-FTIR and p-XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 446-453. |
[13] |
HE Xiong-fei1, 2, HUANG Wei3, TANG Gang3, ZHANG Hao3*. Mechanism Investigation of Cement-Based Permeable Crystalline Waterproof Material Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3909-3914. |
[14] |
ZHOU Jing1,2, ZHANG Qing-qing1,2, JIANG Jin-guo2, NIE Qian2, BAI Zhong-chen1, 2*. Study on the Rapid Identification of Flavonoids in Chestnut Rose (Rosa Roxburghii Tratt) by FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3045-3050. |
[15] |
Samy M. El-Megharbel*,Moamen S. Refat. In First Time: Synthesis and Spectroscopic Interpretations of Manganese(Ⅱ), Nickel(Ⅱ) and Mercury(Ⅱ) Clidinium Bromide Drug Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3316-3320. |
|
|
|
|