光谱学与光谱分析 |
|
|
|
|
|
Application Progress of Laser-Induced Breakdown Spectroscopy for Surface Analysis in Materials Science Field |
ZHANG Yong1,2, JIA Yun-hai1,2*, CHEN Ji-wen1,2, LIU Ying3, SHEN Xue-jing1,2, ZHAO Lei1,2, WANG Shu-ming3, YU Hong4, HAN Peng-cheng1,2, QU Hua-yang1,2, LIU Shao-zun1 |
1. Central Iron & Steel Research Institute, Beijing 100081, China 2. Beijing NCS Analytical Instruments Co., Ltd.,Beijing 100094, China 3. General Research Institute for Nonferrous Metals, Beijing 100088, China 4. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China |
|
|
Abstract As a truly surface analytical tool, laser-induced breakdown spectroscopy (LIBS) was developed in recent ten years, and in this paper, fundamental theory, instrumentation and it’s applications in material science are reviewed in detail. Application progress of elemental distribution and depth profile analysis are mainly discussed in the field of metallurgy, semiconductor and electronical materials at home and abroad. It is pointed out that the pulse energy, ambient gas and it’s pressure, and energy distribution of laser beam strongly influence spatial and depth resolution, and meanwhile a approach to improving resolution considering analytical sensitivity is provided. Compared with traditional surface analytical methods, the advantage of LIBS is very large scanning area, high analytical speed, and that conducting materials or non-conducting materials both can be analyzed. It becomes a powerful complement of traditional surface analytical tool.
|
Received: 2011-12-12
Accepted: 2012-03-20
|
|
Corresponding Authors:
JIA Yun-hai
E-mail: jyh@analysis.org.cn
|
|
[1] Winefordner J D,Gornushkin I B,Correll T,et al. Journal of Analytical Atomic Spectrometry,2004, 19: 1061. [2] Aragon C,Aguilera J A. Spectrochimica Acta Part B: 2008, 63: 893. [3] Miziolek A W, Palleschi V, Schechter I. Laser-Induced Breakdown Spectroscopy. Cambridge University Press, 2006. 225. [4] Bette H,Noll R. J. Phys. D: Appl. Phys., 2004, 37: 1281. [5] Kuss H M,Mittelstaedt H,Mueller G. Journal of Analytical Atomic Spectrometry,2005, 20: 730. [6] Bigne F B. Spectrochimica Acta Part B, 2008, 63: 1122. [7] Bigne F B. Applied Spectroscopy, 2007, 61(3): 333. [8] Cravetchi I V, Taschuk M T, Tsui Y Y, et al. Spectrochimica Acta Part B,2004, 59: 1439. [9] Cravetchi I V, Taschuk M T, Tsui Y Y, et al. Anal. Bioanal. Chem., 2006, 385: 287. [10] Cabalin L M,Mateo M P,Laserna J J. Spectrochimica Acta Part B,2004, 59: 567. [11] Mateo M P,Cabalin L M,Baena J M, et al. Spectrochimica Acta Part B, 2002, 57: 601. [12] Cabalin L M,Laserna J J. Spectrochimica Acta Part B, 2004, 59: 147. [13] Menut D,Fichet P,Lacour J L,et al. Applied Optics, 2003, 42(30): 6063. [14] Wiggenhauser H, Schaurich D, Wilsch G. NDT&E Internationa,1998, 31(4): 307. [15] Cabalin L M,Laserna J J. Analytical Chemistry,2001, 73: 1120. [16] Mateo M P,Palanco S,Vadillo J M,et al. Applied Spectroscopy, 2000, 54(10): 1429. [17] Hiroyuki K,Michihiro A,Hideaki Y,et al. Metallurgical Analysis(冶金分析),2009, 29(1): 13. [18] Muller G,Stahnke F,Bleiner D. Talanta, 2006, 70: 991. [19] Mateo M P,Cabalin L M,Laserna J J. Applied Spectroscopy, 2003, 61(3): 343. [20] Mateo M P,Cabalin L M,Laserna J J. Applied Spectroscopy, 2003, 57(12): 1461. [21] Romero D,Laserna J J. Journal of Analytical Atomic Spectrometry, 1998, 13: 557. [22] Romero D,Laserna J J. Journal of Analytical Atomic Spectrometry,1999, 14: 199. [23] Kim T, Lin C T. J. Phys. Chem. B, 1998, 102: 4284. [24] Vadillo J M,Palanco S,Romero M D,et al. Fresenius J. Anal. Chem., 1996, 355: 909. [25] Romero D,Laserna J J. Spectrochimica Acta Part B, 2000, 55: 1241. [26] Lucena P,Laserna J J. Spectrochimica Acta Part B, 2001, 56: 177. [27] Loebe K, Arnold U, Lucht H, et al. Applied Optics, 2003, 42(30): 6166. [28] Chen J W,Zhao L,Yao N J,et al. 8th International Workshop on Progress in Analytical Chemistry & Materials Characterisation in the Steel and Metal Industries. Luxembourg,May 17, 2011. 190. [29] Vadillo J M,Romero J M,Rodr C G,et al. Surface and Interface Analysis, 1998, 26: 995. [30] Margetic V,Bolshov M,Stockhaus A,et al. Journal of Analytical Atomic Spectrometry, 2001, 16: 616. [31] Vadillo J M,Laserna J J. Journal of Analytical Atomic Spectrometry, 1997, 12: 859. [32] Vadillo J M,Garcia C C,Palanco S,et al. Journal of Analytical Atomic Spectrometry, 1998, 13: 793. [33] Garcia C C,Corral M,Vadillo J M,et al. Applied Spectroscopy, 2000, 54(7): 1027. [34] Mateo M P, Cabalin L M, Laserna J. Applied Optics, 2003, 42(30): 6057. [35] Mateo M P, Vadillo J M,Laserna J J. Journal of Analytical Atomic Spectrometry: 2001, 16: 1317. [36] St-Onge L. Journal of Analytical Atomic Spectrometry,2002, 17: 1083. [37] St-Onge L, Sabsabi M. Spectrochimica Acta Part B, 2000, 55: 299. [38] Tereszchuk K A, Vadillo J M, Laserna J J,et al. Spectrochimica Acta Part B, 2009, 64: 378. [39] Anderson D R, Mcleod C W,Englisha T, et al. Applied Spectroscopy, 1995, 49(6): 691. [40] Milan M,Lucena P,Cabalin L M,et al. Applied Spectroscopy, 1998, 52(3): 444. [41] Balzer H,Hlters S,Sturm V,et al. Analytical and Bioanalysis Chemistry,2006, 385: 234. [42] Ruiz J,González A,Cabalin L M,et al. 8th International Workshop on Progress in Analytical Chemistry & Materials Characterisation in the steel and Metal Industries. Luxembourg,May 17, 2011. 444. |
[1] |
LIU Jia1, 2, GUO Fei-fei2, YU Lei2, CUI Fei-peng2, ZHAO Ying2, HAN Bing2, SHEN Xue-jing1, 2, WANG Hai-zhou1, 2*. Quantitative Characterization of Components in Neodymium Iron Boron Permanent Magnets by Laser Induced Breakdown Spectroscopy (LIBS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 141-147. |
[2] |
YANG Wen-feng1, LIN De-hui1, CAO Yu2, QIAN Zi-ran1, LI Shao-long1, ZHU De-hua2, LI Guo1, ZHANG Sai1. Study on LIBS Online Monitoring of Aircraft Skin Laser Layered Paint Removal Based on PCA-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3891-3898. |
[3] |
SUN Cheng-yu1, JIAO Long1*, YAN Na-ying1, YAN Chun-hua1, QU Le2, ZHANG Sheng-rui3, MA Ling1. Identification of Salvia Miltiorrhiza From Different Origins by Laser
Induced Breakdown Spectroscopy Combined with Artificial Neural
Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3098-3104. |
[4] |
LIU Shu1, JIN Yue1, 2, SU Piao1, 2, MIN Hong1, AN Ya-rui2, WU Xiao-hong1*. Determination of Calcium, Magnesium, Aluminium and Silicon Content in Iron Ore Using Laser-Induced Breakdown Spectroscopy Assisted by Variable Importance-Back Propagation Artificial Neural Networks[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3132-3142. |
[5] |
LI Chang-ming1, CHEN An-min2*, GAO Xun3*, JIN Ming-xing2. Spatially Resolved Laser-Induced Plasma Spectroscopy Under Different Sample Temperatures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2032-2036. |
[6] |
ZHAO Yang1, ZHANG Lei2, 3*, CHENG Nian-kai4, YIN Wang-bao2, 3*, HOU Jia-jia5, BAI Cheng-hua1. Research on Space-Time Evolutionary Mechanisms of Species Distribution in Laser Induced Binary Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2067-2073. |
[7] |
WANG Bin1, 2, ZHENG Shao-feng2, GAN Jiu-lin1, LIU Shu3, LI Wei-cai2, YANG Zhong-min1, SONG Wu-yuan4*. Plastic Reference Material (PRM) Combined With Partial Least Square (PLS) in Laser-Induced Breakdown Spectroscopy (LIBS) in the Field of Quantitative Elemental Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2124-2131. |
[8] |
HU Meng-ying1, 2, ZHANG Peng-peng1, 2, LIU Bin1, 2, DU Xue-miao1, 2, ZHANG Ling-huo1, 2, XU Jin-li1, 2*, BAI Jin-feng1, 2. Determination of Si, Al, Fe, K in Soil by High Pressure Pelletised Sample and Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2174-2180. |
[9] |
WU Shu-jia1, 2, YAO Ming-yin2, 3, ZENG Jian-hui2, HE Liang2, FU Gang-rong2, ZENG Yu-qi2, XUE Long2, 3, LIU Mu-hua2, 3, LI Jing2, 3*. Laser-Induced Breakdown Spectroscopy Detection of Cu Element in Pig Fodder by Combining Cavity-Confinement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1770-1775. |
[10] |
YUAN Shu, WU Ding*, WU Hua-ce, LIU Jia-min, LÜ Yan, HAI Ran, LI Cong, FENG Chun-lei, DING Hong-bin. Study on the Temporal and Spatial Evolution of Optical Emission From the Laser Induced Multi-Component Plasma of Tungsten Carbide Copper Alloy in Vacuum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1394-1400. |
[11] |
WANG Qiu, LI Bin, HAN Zhao-yang, ZHAN Chao-hui, LIAO Jun, LIU Yan-de*. Research on Anthracnose Grade of Camellia Oleifera Based on the Combined LIBS and Fourier Transform NIR Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1450-1458. |
[12] |
CHAI Shu1, PENG Hai-meng1, WU Wen-dong1, 2*. Acoustic-Based Spectral Correction Method for Laser-Induced Breakdown Spectroscopy in High Temperature Environment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1401-1407. |
[13] |
NING Qian-qian, YANG Jia-hao, LIU Xiao-lin, HE Yu-han, HUANGFU Zhi-chao, YU Wen-jing, WANG Zhao-hui*. Design and Study of Time-Resolved Femtosecond Laser-Induced
Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1083-1087. |
[14] |
DING Kun-yan1, HE Chang-tao2, LIU Zhi-gang2*, XIAO Jing1, FENG Guo-ying1, ZHOU Kai-nan3, XIE Na3, HAN Jing-hua1. Research on Particulate Contamination Induced Laser Damage of Optical Material Based on Integrated Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1234-1241. |
[15] |
SU Yun-peng, HE Chun-jing, LI Ang-ze, XU Ke-mi, QIU Li-rong, CUI Han*. Ore Classification and Recognition Based on Confocal LIBS Combined With Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 692-697. |
|
|
|
|