Research on Raman Spectra of Isooctane at Ambient Temperature and Ambient Pressure to 1.2 GPa
ZHANG Fei-fei, ZHENG Hai-fei*
Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Erath and Space Science, Peking University, Beijing 100871, China
Abstract The experimental study of the Raman spectral character for liquid isooctane(2,2,4-trimethylpentane, ATM) was conducted by moissanite anvil cell at the pressure of 0~1.2 GPa and the ambient temperature. The results show that the Raman peaks of the C—H stretching vibration shift to higher frenquencies with increasing pressures. The relations between the system pressure and peaks positions is given as following: ν2 873=0.002 8P+2 873.3; ν2 905=0.004 8P+2 905.4; ν2 935=0.002 7P+2 935.0; ν2 960=0.012P+2 960.9. The Raman spectra of isooctane abruptly changed at the pressure about 1.0 GPa and the liquid-solid phase transition was observed by microscope. With the freezing pressure at ambient temperature and the melting temperature available at 1 atm, the authors got the liquid-solid phase diagram of isooctane. According to Clapeyron equation, the authors obtained the differences of volume and entropy for the liquid-solid phase transition of isooctane: ΔVm=4.46×10-6 m3·mol-1 and ΔS=-30.32 J·K-1·mol-1.
ZHANG Fei-fei,ZHENG Hai-fei. Research on Raman Spectra of Isooctane at Ambient Temperature and Ambient Pressure to 1.2 GPa[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(03): 676-680.
[1] WANG Huai, ZHENG Hai-fei(王 淮,郑海飞). Progress in Natural Science(自然科学进展), 2004, 14(12): 442. [2] WANG Gang, LIAO Shi-yong, et al(王 刚,廖世勇,等). Vehicle Engine(车用发动机),2008, 3: 85. [3] ZENG Shao-qiong(曾绍琼). Organic Chemistry(有机化学). Beijing: Higher Education Press(北京:高等教育出版社),1993. 3. [4] YAN De-lin(闫德林). Oil Depot and Gas Station(石油库与加油站),2010,19(3):15. [5] LIANG Shun-qin, DONG Hai-ming, et al(梁顺琴,董海明,等). Petrochemical Technology & Application(石化技术与应用),2005, 23(4): 264. [6] CHEN Jin-chun, GAO Li-da, et al(陈金春,高立达,等). Journal of The Chinese Rare Earth Society(中国稀土学报),2008, 26(4): 394. [7] MA Jiang-sheng(马江生). Technology Supervision in Petroleum Industry(石油工业技术监督),2002, 18(8):10. [8] Padua A A H, Fareleira J M N A, et al. International Journal of Thermophysics, 1994, 15(2): 229. [9] Dymond J H, Glen N F, Isdale J D. International Journal of Thermophysics, 1985, 6(3): 233. [10] Malhotra R,Woolf L A. International Journal of Thermophysics, 1990, 11(6): 1059. [11] Mao H K, Bell P M. Carnegie Institute Washington Yearbook, 1978, 77: 904. [12] Speight J G. Lange’s Handbook of Chemistry. New York: MCGRAW-HILL,2005. [13] Schmidt C, Ziemann M. American Mineralogist, 2000, 85: 1725. [14] PAN Jia-lai(潘家来). Raman Spectroscopy in Organic Chemistry on the Application(激光拉曼光谱在有机化学上的应用). Beijing: Chemical Industry Press(北京:化学工业出版社),1986. 65. [15] NING Yong-cheng(宁永成). Structural Identification of Organic Compounds and Organic Spectroscopy(有机化合物结构鉴定与有机波谱学). Beijing: Science Press(北京:科学出版社), 2000. 2. [16] WU Xiao-xin, LI Min, et al(武晓鑫,李 敏,等). Chinese Journal of High Pressure Physics(高压物理学报). 2009, 23(4): 305. [17] FU Xian-cai, SHEN Wen-xia, YAO Tian-yang(傅献彩, 沈文霞,姚天扬). Physical Chemistry(物理化学). Beijing: Higher Education Press(北京:高等教育出版社), 1989.
XU Chao-wen1, 2, 3, GAO Jing4*, LI Ying1*, QIN Fei5, LIU Hong1, YI Li1, CUI Yue-ju1, SUN Feng-xia1, FANG Lei-ming6. High Pressure Raman Spectrum Study of Na2CO3[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2087-2091.
LU Ya-rong1, Anwar Hushur1*, Mamatrishat Mamat1, Mubarak Molutjan1, Seiji Kojima2. High Pressure Raman Spectrum Study of NaNbO3[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 738-743.