光谱学与光谱分析 |
|
|
|
|
|
Prediction of Minced Pork Quality Attributes Using Visible and Near Infrared Reflectance Spectroscopy |
FAN Yu-xia, LIAO Yi-tao, CHENG Fang* |
College of Biosystem Engineering and Food Science,Zhejiang University,Hangzhou 310029, China |
|
|
Abstract The objective of the present study was to estimate minced pork meat quality using visible and near infrared (Vis-NIR) spectroscopy. Two hundred twenty five carcasses samples from longissimus dorsi muscle were scanned over the Vis-NIR spectral range from 350 to 1 015 nm and analysed for intramuscular fat (IMF), protein and moisture according to the official methods. Wavelet transform was employed to eliminate the spectra noise. Partial least square regression (PLSR) and support vector machine (SVM) were used to develop Vis-NIR spectroscopy models for chemical composition detection. According to calibration statistics, the best model to predict intramuscular fat content was developed by SVM with the denoised spectra, the correlation coefficient was 0.889 for calibration and 0.888 for validation. For protein and moisture, the best model was achieved with the PLS method with the correlation coefficient of 0.869 and 0.881 for protein calibration and validation sets and 0.877 and 0.848 for moisture calibration and validation sets, respectively. And all the ratios of standard deviation of validation set to root mean square error of prediction (RPD) were not more than 3.0. Results indicated that it was possible to predict chemical composition in minced pork meat. As a fast predictor of meat quality using Vis-NIR spectroscopy, it is necessary to improve the precision and the robustness of the model for practice.
|
Received: 2010-11-21
Accepted: 2011-03-20
|
|
Corresponding Authors:
CHENG Fang
E-mail: fcheng@zju.edu.cn
|
|
[1] CAI Jian-rong, WAN Xin-min, CHEN Quan-sheng(蔡健荣, 万新民, 陈全胜). Acta Optica Sinica(光学学报), 2009, 29(10): 2808. [2] LIAO Yi-tao, FAN Yu-xia, WU Xue-qian, et al(廖宜涛, 樊玉霞, 伍学仟, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2010, 41(9): 104. [3] Prieto N, Roehe R, Lavin P, et al. Meat Science, 2009, 83(2): 175. [4] Prieto N, Ross D W, Navajas E A, et al. Meat Science, 2009, 83(2): 96. [5] Riovanto R, Szendro Z, Mirisola M, et al. Italian Journal of Animal Science, 2009, 8(2): 799. [6] del Moral F G, Guillen A, del Moral L G, et al. Journal of Food Engineering, 2009, 90(4): 540. [7] Liao Y T, Fan Y X, Cheng F. Meat Science, 2010, 86(4): 901. [8] Tejerina D, Lopez-Parra M M, Garcia-Torres S. Food Chemistry, 2009, 113(4): 1290. [9] Prieto N, Andres S, Giraldez F J, et al. Meat Science, 2008, 79(4): 692. [10] Ripoll G, Alberti P, Panea B, et al. Meat Science, 2008, 80(3): 697. [11] SHAN Yang, ZHU Xiang-rong, XU Qing-song, et al(单 杨, 朱向荣, 许青松,等). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2010, 29(2): 128. [12] XIA Jun-fang, LI Xiao-yu(夏俊芳,李小昱). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2009, 40(4): 143. [13] Liang L W, Wang B, Guo Y, et al. Vibrational Spectroscopy, 2009, 49(2): 274.
|
[1] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[2] |
LI He1, WANG Yu2, FAN Kai2, MAO Yi-lin2, DING Shi-bo3, SONG Da-peng3, WANG Meng-qi3, DING Zhao-tang1*. Evaluation of Freezing Injury Degree of Tea Plant Based on Deep
Learning, Wavelet Transform and Visible Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 234-240. |
[3] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[4] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[5] |
SHEN Si-cong, ZHANG Jing-xue, CHEN Ming-hui, LI Zhi-wei, SUN Sheng-nan, YAN Xue-bing*. Estimation of Above-Ground Biomass and Chlorophyll Content of
Different Alfalfa Varieties Based on UAV Multi-Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3847-3852. |
[6] |
ZHOU Bei-bei1, LI Heng-kai1*, LONG Bei-ping2. Variation Analysis of Spectral Characteristics of Reclaimed Vegetation in an Ionic Rare Earth Mining Area[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3946-3954. |
[7] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[8] |
HUANG Hua1, LIU Ya2, KUERBANGULI·Dulikun1, ZENG Fan-lin1, MAYIRAN·Maimaiti1, AWAGULI·Maimaiti1, MAIDINUERHAN·Aizezi1, GUO Jun-xian3*. Ensemble Learning Model Incorporating Fractional Differential and
PIMP-RF Algorithm to Predict Soluble Solids Content of Apples
During Maturing Period[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3059-3066. |
[9] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[10] |
CHEN Jia-wei1, 2, ZHOU De-qiang1, 2*, CUI Chen-hao3, REN Zhi-jun1, ZUO Wen-juan1. Prediction Model of Farinograph Characteristics of Wheat Flour Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3089-3097. |
[11] |
LIU Fei1, TAN Jia-jin1*, XIE Gu-ai2, SU Jun3, YE Jian-ren1. Early Diagnosis of Pine Wilt Disease Based on Hyperspectral Data and Needle Resistivity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3280-3285. |
[12] |
MA Qian1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, CHENG Hui-zhu1, 2, ZHAO Yan-chun1, 2. Research on Classification of Heavy Metal Pb in Honeysuckle Based on XRF and Transfer Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2729-2733. |
[13] |
WU Yong-qing1, 2, TANG Na1, HUANG Lu-yao1, CUI Yu-tong1, ZHANG Bo1, GUO Bo-li1, ZHANG Ying-quan1*. Model Construction for Detecting Water Absorption in Wheat Flour Using Vis-NIR Spectroscopy and Combined With Multivariate Statistical #br#
Analyses[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2825-2831. |
[14] |
CAI Jian-rong1, 2, HUANG Chu-jun1, MA Li-xin1, ZHAI Li-xiang1, GUO Zhi-ming1, 3*. Hand-Held Visible/Near Infrared Nondestructive Detection System for Soluble Solid Content in Mandarin by 1D-CNN Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2792-2798. |
[15] |
LÜ Shi-lei1, 2, 3, WANG Hong-wei1, LI Zhen1, 2, 3*, ZHOU Xu1, ZHAO Jing1. Hyperspectral Identification Model of Cantonese Tangerine Peel Based on BWO-SVM Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2894-2901. |
|
|
|
|