光谱学与光谱分析 |
|
|
|
|
|
FTIR Analysis of Protein Secondary Structure in Cheddar Cheese during Ripening |
WANG Fang1, LIU Ai-ping1, REN Fa-zheng1, ZHANG Xiao-ying1,2, Stephanie Clark3, ZHANG Lu-da4, GUO Hui-yuan1* |
1. College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China 2. Beijing Higher Institution Engineering Research Center of Animal Product, Beijing 100083, China 3. Department of Food Science and Human Nutrition, Iowa State University, Iowa 50011, USA 4. College of Science, China Agricultural University, Beijing 100094, China |
|
|
Abstract Proteolysis is one of the most important biochemical reactions during cheese ripening. Studies on the secondary structure of proteins during ripening would be helpful for characterizing protein changes for assessing cheese quality. Fourier transform infrared spectroscopy (FTIR), with self-deconvolution, second derivative analysis and band curve-fitting, was used to characterize the secondary structure of proteins in Cheddar cheese during ripening. The spectra of the amide I region showed great similarity, while the relative contents of the secondary structures underwent a series of changes. As ripening progressed, the α-helix content decreased and the β-sheet content increased. This structural shift was attributed to the strengthening of hydrogen bonds that resulted from hydrolysis of caseins. In summary, FTIR could provide the basis for rapid characterization of cheese that is undergoing ripening.
|
Received: 2010-07-27
Accepted: 2010-09-20
|
|
Corresponding Authors:
GUO Hui-yuan
E-mail: guohuiyuan99@gmail.com
|
|
[1] Fox P F, Lucey J A, Cogan T M. Critical Reviews in Food Science and Nutrition, 1990, 29(4): 237. [2] Lues J F R, Bekker A C M. Journal of Food Composition and Analysis, 2002, 15(1): 11. [3] Subramanian A, Harper W J, Rodriguez-Saona L E. Journal of Dairy Science, 2009, 92(1): 87. [4] Fagen C C, O’Donnell C P, O’Callaghan D J, et al. Journal of Food Science, 2007, 72(3): 130. [5] Chen M, Irudayaraj J. Journal of Food Science, 1998, 63(1): 96. [6] Chen M, Irudayaraj J, McMahon D J. Journal of Dairy Science, 1998, 81(11): 2791. [7] Irudayaraj J, Yang H. Applied Spectroscopy, 2000, 54(4): 595. [8] Pillonel L, Luginbühl W, Picque D, et al. European Food Research and Technology, 2003, 216(2): 174. [9] Mazerolles G, Devaux M F, Duboz G, et al. Lait, 2001, 81: 509. [10] Rodriguez-Saona L E, Koca N, Harper W J, et al. Journal of Dairy Science, 2006, 89(5): 1407. [11] Kuchroo C N, Fox P F. Milchwissenschaft, 1982, 37: 331. [12] Lynch J M, Barbano D M, Fleming J R. Journal of AOAC International, 1998, 81(4): 763. [13] Andrews A T. Journal of Dairy Research, 1983, 50(1): 45. [14] Blakesley R W, Boezi J A. Analytical Biochemistry, 1977, 82(2): 580. [15] Barros A S, Mafra I, Ferreira D, et al. Carbohydrate Polymers, 2002, 50(1): 85. [16] Dong A, Huang P, Caughey W S. Biochemistry, 1990, 29(13): 3303. [17] Brickley C A, Auty M A E, Piraino P, et al. Journal of Food Science, 2007, 72(9): 483. [18] O’Mahony J A, Lucey J A, McSweeney P L H. Journal of Dairy Science, 2005, 88(9): 3101. [19] Boye J I, Inteaz A, Ashraf A, et al. Internal Dairy Journal, 1995, 5(4): 337. [20] Poole P L, Finney J L. Biopolymers, 1984, 23(9): 1647. [21] Wu L L, Zhou Q, Zhou X, et al. Spectroscopy and Spectral Analysis, 2009, 29(1): 82. [22] Kansiz M, Heraud P, Wood B, et al. Phytochemistry, 1999, 52(3): 407. [23] Byler D M, Susi H. Biopolymers, 1986, 25(3): 469. [24] Lucey J A, Johnson M E, Horne D S. Journal of Dairy Science, 2003, 86(9): 2725. |
[1] |
XU Qi-lei, GUO Lu-yu, DU Kang, SHAN Bao-ming, ZHANG Fang-kun*. A Hybrid Shrinkage Strategy Based on Variable Stable Weighted for Solution Concentration Measurement in Crystallization Via ATR-FTIR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1413-1418. |
[2] |
KAN Yu-na1, LÜ Si-qi1, SHEN Zhe1, ZHANG Yi-meng1, WU Qin-xian1, PAN Ming-zhu1, 2*, ZHAI Sheng-cheng1, 2*. Study on Polyols Liquefaction Process of Chinese Sweet Gum (Liquidambar formosana) Fruit by FTIR Spectra With Principal Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1212-1217. |
[3] |
YAN Li-dong1, ZHU Ya-ming1*, CHENG Jun-xia1, GAO Li-juan1, BAI Yong-hui2, ZHAO Xue-fei1*. Study on the Correlation Between Pyrolysis Characteristics and Molecular Structure of Lignite Thermal Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 962-968. |
[4] |
LI Zong-xiang1, 2, ZHANG Ming-qian1*, YANG Zhi-bin1, DING Cong1, LIU Yu1, HUANG Ge1. Application of FTIR and XRD in Coal Structural Analysis of Fault
Tectonic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 657-664. |
[5] |
CHENG Xiao-xiao1, 2, LIU Jian-guo1, XU Liang1*, XU Han-yang1, JIN Ling1, SHEN Xian-chun1, SUN Yong-feng1. Quantitative Analysis and Source of Trans-Boundary Gas Pollution in Industrial Park[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3762-3769. |
[6] |
ZHANG Hao1, 2, HAN Wei-sheng1, CHENG Zheng-ming3, FAN Wei-wei1, LONG Hong-ming2, LIU Zi-min4, ZHANG Gui-wen5. Thermal Oxidative Aging Mechanism of Modified Steel Slag/Rubber Composites Based on SEM and FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3906-3912. |
[7] |
CHEN Jing-yi1, ZHU Nan2, ZAN Jia-nan3, XIAO Zi-kang1, ZHENG Jing1, LIU Chang1, SHEN Rui1, WANG Fang1, 3*, LIU Yun-fei3, JIANG Ling3. IR Characterizations of Ribavirin, Chloroquine Diphosphate and
Abidol Hydrochloride[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2047-2055. |
[8] |
MA Fang1, HUANG An-min2, ZHANG Qiu-hui1*. Discrimination of Four Black Heartwoods Using FTIR Spectroscopy and
Clustering Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1915-1921. |
[9] |
ZHANG Dian-kai1, LI Yan-hong1*, ZI Chang-yu1, ZHANG Yuan-qin1, YANG Rong1, TIAN Guo-cai2, ZHAO Wen-bo1. Molecular Structure and Molecular Simulation of Eshan Lignite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1293-1298. |
[10] |
WANG Fang-fang1, ZHANG Xiao-dong1, 2*, PING Xiao-duo1, ZHANG Shuo1, LIU Xiao1, 2. Effect of Acidification Pretreatment on the Composition and Structure of Soluble Organic Matter in Coking Coal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 896-903. |
[11] |
HU Chao-shuai1, XU Yun-liang1, CHU Hong-yu1, CHENG Jun-xia1, GAO Li-juan1, ZHU Ya-ming1, 2*, ZHAO Xue-fei1, 2*. FTIR Analysis of the Correlation Between the Pyrolysis Characteristics and Molecular Structure of Ultrasonic Extraction Derived From Mid-Temperature Pitch[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 889-895. |
[12] |
YANG Jiong1, 2, QIU Zhi-li1, 4*, SUN Bo3, GU Xian-zi5, ZHANG Yue-feng1, GAO Ming-kui3, BAI Dong-zhou1, CHEN Ming-jia1. Nondestructive Testing and Origin Traceability of Serpentine Jade From Dawenkou Culture Based on p-FTIR and p-XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 446-453. |
[13] |
HE Xiong-fei1, 2, HUANG Wei3, TANG Gang3, ZHANG Hao3*. Mechanism Investigation of Cement-Based Permeable Crystalline Waterproof Material Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3909-3914. |
[14] |
ZHOU Jing1,2, ZHANG Qing-qing1,2, JIANG Jin-guo2, NIE Qian2, BAI Zhong-chen1, 2*. Study on the Rapid Identification of Flavonoids in Chestnut Rose (Rosa Roxburghii Tratt) by FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3045-3050. |
[15] |
Samy M. El-Megharbel*,Moamen S. Refat. In First Time: Synthesis and Spectroscopic Interpretations of Manganese(Ⅱ), Nickel(Ⅱ) and Mercury(Ⅱ) Clidinium Bromide Drug Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3316-3320. |
|
|
|
|