光谱学与光谱分析 |
|
|
|
|
|
In Vivo Identification of Radix Panacis Quinquefolii by Spectral Imaging Technology |
ZHAO Jing1,PANG Qi-chang2,MA Ji3*,LIU Chuan-ming3,WANG Lin2,CUI Dai-jun2 |
1. College of Science, South China Agricultural University, Guangzhou 510640, China 2. Key Laboratory of Optoelectronic Information and Sensing Technologies, Jinan University, Guangzhou 510630, China 3. College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China |
|
|
Abstract Radix Panacis quinquefolii pieces coming from different drug stores were tested by crystal liquid spectral imaging instrument, and a new method for quality control was presented. The spectral resolution is 5 nm, the spectral range is from 405 to 680 nm, and the spatial resolution is 50 lp·mm-1.The characteristic spectrum from spectral cube was used to construct the fingerprint of Radix Panacis quinquefolii, and the fingerprint was analyzed by principal method to identify the counterfeit and to evaluate the quality. The result is fully consistent with biological character and chemical analysis result. So the technology is suitable for fingerprint construction and quality evaluation of traditional Chinese medicine. The whole testing process is noninvasive, fast and convenient.
|
Received: 2010-01-08
Accepted: 2010-04-12
|
|
Corresponding Authors:
MA Ji
E-mail: majilx@yahoo.com.cn;majilx@163.com
|
|
[1] XIE Zong-wan(谢宗万). Discussion of Varieties of Traditional Chinese Medicine(中药材品种论述,上册). Shanghai: Shanghai Science and Technology Press(上海: 上海科学技术出版社), 1999. 60. [2] Wei Guang Maa, Masanori Mizutania, Karl Egil Malterudc, et al. Phytochemistry, 1999, 52(6): 1133. [3] Wang Xiaomin, Takeo Sakuma, Ebenezer Asafu-Adjaye. Analytical Chemistry, 1999, 71(8): 1579. [4] MA Xiao-qiong, WANG Long-xing, XU Qing(马小琼,王龙星,徐 青). Chemical Journal of Chinese Universities(高等学校化学学报), 2004, 25(2): 238. [5] XUE Yan, WEN Li(薛 燕, 闻 莉). Chinese Journal of Pharmaceutical Analysis(药物分析杂志), 2009, 29(1): 79. [6] Zhang Kun, Wang Xiao, Ding Lan. Chemical Research in Chinese Universities, 2008, 24(6): 707. [7] Sritularak Boonchoo, Morinaga Osamu, Yuan Chun-Su. Journal of Natural Medicines, 2009, 63(3): 360. [8] Gowen A A, O’Donnell C P, Cullen P J. Trends in Food Science & Technology, 2007, 18(12): 590. [9] Masry G E, Wang N, Sayed A E. Food Science and Technology, 2008, 41(2): 337. [10] ZHAO Jing, PANG Qi-chang, MA Ji(赵 静, 庞其昌, 马 骥). Acta Photonica Sinica(光子学报), 2008, 37(4): 758. [11] State Pharmacopoeia Committee of the People’s Republic of China(中华人民共和国卫生部药典委员会编). Pharmacopoeia of the People’s Republic of China(中华人民共和国药典, Vol.1). Beijing: Chemical Industry Press(北京: 化学工业出版社), 2005. [12] LIU Jian-ming, TANG Xiao-bo, XIONG Li-xin(刘建明, 汤小波, 熊立新). Jiangxi Journal of Traditional Chinese Medicine(江西中医药), 2009, 40(7): 61. [13] YU Qing, LI Tie-ming(余 青, 李铁铭). Journal of Liaoning University of Traditional Chinese Medicine(辽宁中医药大学学报), 2009, 11(2): 154. [14] SONG Qin-xin, FENG Fang, ZHANG Xin-yue(宋沁馨, 冯 芳, 张心悦). Chinese Journal of Pharmaceutical Analysis(药物分析杂志), 2009, 29(1): 1.
|
[1] |
GAO Hong-sheng1, GUO Zhi-qiang1*, ZENG Yun-liu2, DING Gang2, WANG Xiao-yao2, LI Li3. Early Classification and Detection of Kiwifruit Soft Rot Based on
Hyperspectral Image Band Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 241-249. |
[2] |
MU Da1, 2, WANG Qi-shu1, 2*, CUI Zong-yu1, 2, REN Jiao-jiao1, 2, ZHANG Dan-dan1, 2, LI Li-juan1, 2, XIN Yin-jie1, 2, ZHOU Tong-yu3. Study on Interference Phenomenon in Terahertz Time Domain
Spectroscopy Nondestructive Testing of Glass Fiber Composites[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3031-3040. |
[3] |
CAI Jian-rong1, 2, HUANG Chu-jun1, MA Li-xin1, ZHAI Li-xiang1, GUO Zhi-ming1, 3*. Hand-Held Visible/Near Infrared Nondestructive Detection System for Soluble Solid Content in Mandarin by 1D-CNN Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2792-2798. |
[4] |
TANG Ruo-han1, 2, LI Xiu-hua1, 2*, LÜ Xue-gang1, 2, ZHANG Mu-qing2, 3, YAO Wei2, 3. Transmittance Vis-NIR Spectroscopy for Detecting Fibre Content of
Living Sugarcane[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2419-2425. |
[5] |
LUO Zheng-fei1, GONG Zheng-li1, 2, YANG Jian1, 2*, YANG Chong-shan2, 3, DONG Chun-wang3*. Rapid Non-Destructive Detection Method for Black Tea With Exogenous Sucrose Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2649-2656. |
[6] |
ZHANG Yue1, 2, LI Yang1, 2, SONG Yue-peng1, 2*. Nondestructive Detection of Slight Mechanical Damage of Apple by Hyperspectral Spectroscopy Based on Stacking Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2272-2277. |
[7] |
SHENG Qiang1, 2, ZHENG Jian-ming1*, LIU Jiang-shan2, SHI Wei-chao1, LI Hai-tao2. Advances and Prospects in Inner Surface Defect Detection Based on Cite Space[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 9-15. |
[8] |
ZHU Jin-yan, ZHU Yu-jie*, FENG Guo-hong*, ZENG Ming-fei, LIU Si-qi. Optimization of Near-Infrared Detection Model of Blueberry Sugar Content Based on Deep Belief Network and Hybrid Wavelength Selection Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3775-3782. |
[9] |
WANG Wei, LI Yong-yu*, PENG Yan-kun, YANG Yan-ming, YAN Shuai, MA Shao-jin. Design and Experiment of a Handheld Multi-Channel Discrete Spectrum Detection Device for Potato Processing Quality[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3889-3895. |
[10] |
LI Ming1*, HAN Dong-hai2*, LU Ding-qiang1, LU Xiao-xiang1, CHAI Chun-xiang1, LIU Wen3, SUN Ke-xuan1. Research Progress of Universal Model of Near-Infrared Spectroscopy in Agricultural Products and Foods Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3355-3360. |
[11] |
JIN Cheng-qian1, 2, GUO Zhen1, ZHANG Jing1, MA Cheng-ye1, TANG Xiao-han1, ZHAO Nan1, YIN Xiang1. Non-Destructive Detection and Visualization of Soybean Moisture Content Using Hyperspectral Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3052-3057. |
[12] |
ZHANG Xu1, YAN Yue-er1*, ZHANG Chun-mei2*, YANG Guang-hui1, TANG Yi3. Non-Destructive Analysis of Yan’an Red Literature by FTIR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3097-3102. |
[13] |
ZHOU Tong-tong1, SUN Xiao-lin1, SUN Zhi-zhong2, PENG He-huan1, SUN Tong1, HU Dong1*. Current Status and Future Perspective of Spectroscopy and Imaging
Technique Applications in Bruise Detection of Fruits and Vegetables:
A Review[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2657-2665. |
[14] |
LI Rui1, LI Bo1*, WANG Xue-wen1, LIU Tao1, LI Lian-jie1,2, FAN Shu-xiang2. A Classification Method of Coal and Gangue Based on XGBoost and
Visible-Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2947-2955. |
[15] |
LIAN Xiao-qin1, 2, CHEN Qun1, 2, TANG Shen-miao1, 2, WU Jing-zhu1, 2, WU Ye-lan1, 2, GAO Chao1, 2. Quantitative Analysis Method of Key Nutrients in Lanzhou Lily Based on NIR and SOM-RBF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2025-2032. |
|
|
|
|