光谱学与光谱分析 |
|
|
|
|
|
Saltation Behavior in Excitation Spectra of Fluorescent Molecules |
MIAO Di, XU Yi-zhuang, YANG Jun, XU Zhen-hua, WU Jin-guang* |
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China |
|
|
Abstract Excitation spectra are commonly used to study relationship between molecular structure of fluorescent substances and energy transfer during the fluorescence process. It is generally taken for granted that the excitation spectrum of the sample is equivalent to its absorption spectrum, even a copy of the latter. However, exceptions have been found in many cases. Considering various factors that affect the excitation spectra of solution comprehensively, a model has been established to study the behavior of the excitation spectra. After analyzing the model mathematically, including introducing catastrophe theory, we came into the following conclusions: As far as the topological properties are concerned, the excitation spectra are the same as its absorption spectra, provided the concentration of the substance is below a threshold. However, when the concentration is beyond the threshold, the excitation spectra undergo a series of topological saltation, leading to significant a deviation from the absorption spectra. Comparative studies of both excitation and absorption spectra of naphthalene dissolved in n-hexane confirmed the above hypothesis.
|
Received: 2003-07-06
Accepted: 2003-09-26
|
|
Corresponding Authors:
WU Jin-guang
|
|
Cite this article: |
MIAO Di,XU Yi-zhuang,YANG Jun, et al. Saltation Behavior in Excitation Spectra of Fluorescent Molecules [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2004, 24(05): 513-518.
|
|
|
|
URL: |
http://www.gpxygpfx.com/EN/Y2004/V24/I05/513 |
[1] 祝大昌等译. 分子发光分析法(荧光法和磷光法). 上海: 复旦大学出版社,1985. [2] LI Zhen-jia,CHEN Pan-zao,GAO Ping et al(李振甲,陈泮藻,高 平等). Time Resolved Fluorescence Analysis Technology and Application(时间分辨荧光分析技术及应用). Beijing: Science Press(北京: 科学出版社),1996. [3] Turro N J. Modern Molecular Photochemistry. The Benjamin/Cummings Publishing Co., Inc, 1987. [4] YANG Jun, XU Yi-zhuang, WENG Shi-fu et al(杨 军,徐怡庄,翁诗甫等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2002,22(5): 741. [5] LI Yong,ZHANG Ke,XU Yi-zhuang et al(李 勇,张 珂,徐怡庄等). Acta Phys. -Chim. Sin.(物理化学学报),2002,22(3): 353. [6] 杨 军. 稀土配合物的荧光光谱研究. 北京大学硕士研究生学位论文,2003. [7] Chemistry Department of Peking University(北京大学化学系仪器分析教学组). Course of Instrumental Analysis(仪器分析教程). Beijing: Peking University Press(北京: 北京大学出版社),1999. [8] Poston T, Stewart I. Catastrophe Theory and its Applications. Pitman Publishing Limited, 1978.
|
[1] |
ZHOU Cai-hua, DING Xiao. DFT Calculation of Absorption Spectra for Planar Porphyrin Derivatives[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1769-1773. |
[2] |
MA Ping1, 2, Andy Hsitien Shen1*, ZHONG Yuan1, LUO Heng1. Study on UV-Vis Absorption Spectra of Jadeite From Different Origins[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1827-1831. |
[3] |
JIANG Ya-jing, SONG Jun-ling*, RAO Wei, WANG Kai, LOU Deng-cheng, GUO Jian-yu. Rapid Measurement of Integrated Absorbance of Flow Field Using Extreme Learning Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1346-1352. |
[4] |
LÜ Yang, PEI Jing-cheng*, GAO Ya-ting, CHEN Bo-yu. Chemical Constituents and Spectra Characterization of Gem-Grade
Triplite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1204-1208. |
[5] |
DU Bao-lu, LI Meng, GUO Jin-jia*, ZHANG Zhi-hao, YE Wang-quan, ZHENG Rong-er. The Experimental Research on In-Situ Detection for Dissolved CO2 in
Seawater Based on Tunable Diode Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1264-1269. |
[6] |
SU Jing-ming1, 2, 3, ZHAO Min-jie1, ZHOU Hai-jin1, YANG Dong-shang1, 2, HONG Yan3, SI Fu-qi1*. On-Orbit Degradation Monitoring of Environmental Trace Gases Monitoring Instrument Based on Level 0 Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 686-691. |
[7] |
XI Liang1,2, SI Fu-qi1*, JIANG Yu1, ZHOU Hai-jin1, QIU Xiao-han1, CHANG Zhen1. Ground-Based IDOAS De-Striping by Weighted Unidirectional Variation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 627-633. |
[8] |
WAN Xiao-ming1, 2, ZENG Wei-bin1, 2, LEI Mei1, 2, CHEN Tong-bin1, 2. Micro-Distribution of Elements and Speciation of Arsenic in the Sporangium of Pteris Vittata[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 478-482. |
[9] |
WANG Zhao-hui1, ZHAO Yan1, 3, 4*, FENG Chao2. Multi-Wavelength Random Lasing Form Doped Polymer Film With Embedded Multi-Shaped Silver Nanoparticle[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 38-42. |
[10] |
LIU Guo-hua, LI Qi-hua*, OU Jin-ping, XU Heng, ZHU Peng-cheng, LIU Hao-ran. Passive Spectrum Measurement of HCHO in Chongqing Area Based on MAX-DOAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 243-247. |
[11] |
ZHONG Yuan, QU Meng-wen, Andy Hsitien Shen*. Comparison of Chemical Composition and Spectroscopy of Purple- Brownish Red Garnet From Zambia, Tanzania and Australia[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 184-190. |
[12] |
JIANG Cheng1, TANG Gui-qian2*, LI Qi-hua1*, LIU Bao-xian3, WANG Meng2, WANG Yue-si2. Vertical Profile of Aerosol in Spring in Beijing Based on Multi-Axis Differential Optical Absorption Spectroscopy Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 265-271. |
[13] |
CHENG Liang-xiao1, 2, TAO Jin-hua1*, ZHOU Hai-jin3, YU Chao1, FAN Meng1, WANG Ya-peng4, WANG Zhi-bao5, CHEN Liang-fu1. Evaluations of Environmental Trace Gases Monitoring Instrument (EMI) Level 1 Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3881-3886. |
[14] |
MA Hong-liang1, 2, ZHENG Jian-jie1, 3, 4, LIU Qiang1, 3*, QIAN Xian-mei1, 3, ZHU Wen-yue1, 3. A Multispectrum Fitting Program Based on Non-Linear Least-Squares Method for Line Parameters:Application to 12CH4[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3887-3891. |
[15] |
MA Li1, 2, FAN Xin-li1, 2, ZHANG Shuo1, 2, WANG Wei-feng1, 2, WEI Gao-ming1, 2. Research on CH4 Gas Detection and Temperature Correction Based on TDLAS Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3632-3638. |
|
|
|
|