光谱学与光谱分析 |
|
|
|
|
|
Preparation and Spectrum Properties of ZnS∶Ag Nanocrystals |
QU Hua,CAO Li-xin*,SU Ge,LIU Wei,JIANG Dai-xun,DONG Bo-hua,SUN Yuan-guang |
Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China |
|
|
Abstract In the present paper, ZnS∶Ag nanoparticles were prepared with simple chemicals by hydrothermal method. XRD patterns indicated that the products have cubic zinc blende crystal structure. The particle diameters were calculated using the Scherer’s formula, and the particle size showed a nonlinear increase with the rise of reaction temperature. TEM images demonstrated the approximate sphere shapes of products, and the crystal sizes approached the estimated ones respectively. The luminescence properties were investigated with PL and PLE spectra. Emission peaks were at about 450 nm. This emission was ascribed to the recombination between the sulfur vacancy-related electron trap donor having an energy level just below the conduction band and the Ag-related hole trap acceptor above the valence band. Excitation peaks were at about 333 nm, and the excitation was attributed to the near-band-edge absorption of ZnS matrix. The luminescence intensity was strongly influenced by the reaction temperatures and time. It increased, decreased, and then increased again with the rise of reaction temperature, and increased then decreased with the increase in reaction time. ZnS∶Ag nanoparticles synthesized at 200 ℃ for 6 hours have a well luminescence intensity.
|
Received: 2007-11-02
Accepted: 2008-03-17
|
|
Corresponding Authors:
CAO Li-xin
E-mail: caolixin@mail.ouc.edu.cn
|
|
[1] Yang H M, Huang C H, Su X H, et al. Journal of Alloys and Compounds, 2005, 402: 274. [2] Yang P, Song C F, Lu M K, et al. Journal of Physics and Chemistry of Solids, 2002, 63(4): 639. [3] Chen Q D, Shen X H, Gao H C. Journal of Colloid and Interface Science, 2007, 308: 491. [4] Bol A A, Ferwerda J, Bergwerff J A, et al. Journal of Luminescence, 2002, 99: 325. [5] LI Zhi-qiang, TIAN Shao-hua, SONG Wei-peng, et al(李志强,田少华,宋伟朋,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25 (10): 1730. [6] Luo X X, Cao W H, Zhou L X. Journal of Luminescence, 2007, 122: 812. [7] Hao E C, Sun Y P, Yang B, et al. Journal of Colloid and Interface Science, 1998, 204: 369. [8] Jian W P, Zhuang J Q, Zhang D W, et al. Materials Chemistry and Physics, 2006, 99: 494. [9] Bol A A, Meijerink A. J. Phys. Chem. B, 2001, 105: 10197. [10] Bol A A, Meijerink A. J. Phys. Chem. B, 2001, 105: 10203. [11] Chen X J, Xu H F, Xu N S, et al. Inorganic Chemistry, 2003, 42: 3100. [12] CAO Li-xin, HUANG Shi-hua, REN Shan-ling, et al(曹立新,黄世华,任山令,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2003, 23(3): 451. [13] GONG Chang-sheng, ZHANG Ke-li(贡长生,张克立). New Type Functional Materials(新型功能材料). Beijing: Chemical Industry Press(北京:化学工业出版社), 2001. 370. [14] Feng S H, Xu R R. Acc. Chem. Res., 2001, 34: 239. [15] ZHANG Zhong-tai, ZHANG Jun-ying(张中太,张俊英). Inorganic Photoluminescent Materials and Application(无机光致发光材料及应用). Beijing: Chemical Industry Press(北京:化学工业出版社), 2005. 138. [16] ZHOU Rui-fa, HAN Ya-fang, CHEN Xiang-bao(周瑞发,韩雅芳,陈祥宝). Nanomaterial Technology(纳米材料技术). Beijing: National Defence Industry Press(北京:国防工业出版社), 2003. 121. [17] Denzler D, Olschewski M, Sattler K. Journal of Applied Physics, 1998, 84 (5): 2842. |
[1] |
QI Guo-min1, TONG Shi-qian1, LIN Xu-cong1, 2*. Specific Identification of Microcystin-LR by Aptamer-Functionalized Magnetic Nanoprobe With Laser-Induced Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3813-3819. |
[2] |
LAI Niu, HUANG Qi-qiang, ZHANG Qin-yang, ZHANG Bo-wen, WANG Juan, YANG Jie, WANG Chong, YANG Yu, WANG Rong-fei*. Introduction to Perovskite Quantum Dots and Metal-Organic Frameworks and the Development of Composites[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3321-3329. |
[3] |
DING Han. Background-Free Development of Latent Fingerprints on Fluorescent
Substrates[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3427-3435. |
[4] |
QIN Li-mei, Andy Hsitien Shen*. Photoluminescence Spectral Characteristics of Jet From Fushun, Liaoning Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3180-3185. |
[5] |
YU Run-tian1, MA Man-man1, QIN Zhao2*, LIU Guan-nan1, ZHANG Rui1, LIU Dong1*. Study on Diagnostics of Nano Boron-Based Composite Metal Particles in Dispersion Combustion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3252-3259. |
[6] |
ZHU Hong-wei1, CHENG You-fa1, CHEN Shu-xiang2*, FAN Chun-li1, LI Ting1, LIU Hai-bin1, ZHAO Xiao-xue1SHAN Guang-qi1, LI Jian-jun1. Spectroscopic Characteristics of a Natural Diamond Suspected of Synthetic Diamond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1690-1696. |
[7] |
YAN Xue-jun1, ZHOU Yang2, HU Dan-jing1, YU Dan-yan1, YU Si-yi1, YAN Jun1*. Application of UV-VIS Diffuse Reflectance Spectrum, Raman and
Photoluminescence Spectrum Technology in Nondestructive
Testing of Yellow Pearl[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1703-1710. |
[8] |
HAN Zhao-xia1, 2, 3*, YANG Zhi-jin1, ZHANG Zhi-hong1, DING Shu-hui1, ZHANG Da-wei1, 2, 3, HONG Rui-jin1, 2, 3, TAO Chun-xian1, 2, 3, LIN Hui1, 2, 3, YU De-chao1, 2, 3. Preparation of Full-Color Carbon Quantum Dots and Their Application in WLED[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1358-1366. |
[9] |
LI Zhao, WANG Ya-nan, XU Yi-pu, CAO Jing, WANG Yong-feng, WU Kun-yao, DENG Lu. Synthesis and Photoluminescence of Blue-Emitting Phosphor
YVO4∶Tm3+ for White Light Emitting Diodes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 623-628. |
[10] |
ZHAI Yan-ke1, PAN Yi-xing1, XIANG Hao1, XU Li1*, ZHU Ze-ce2, LEI Mi1. Coordination Interaction of DSAZn With Quercetin and High Sensitivity Detection of Quercetin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 122-128. |
[11] |
ZHAO Guo-qiang1, QIU Meng-lin1*, ZHANG Jin-fu1, WANG Ting-shun1, WANG Guang-fu1, 2*. Peak Splitting Method of Ion-Beam-Induced-Luminescence Spectrum Based on Voigt Function Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3512-3518. |
[12] |
LÜ Yang1, PEI Jing-cheng1*, ZHANG Yu-yang2. Chemical Composition and Spectra Characteristics of Hydrothermal Synthetic Sapphire[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3546-3551. |
[13] |
WANG Chong1, WANG Jing-hua1, 2, LI Dong-dong1, SHE Jiang-bo2. Preparation of Gd3+-Doped LiYF4∶Yb3+/Ho3+ Micro-Crystal and the Application Research in Anti-Counterfeiting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3581-3587. |
[14] |
LIAO Yi-min1, YAN Yin-zhou1, WANG Qiang2*, YANG Li-xue3, PAN Yong-man1, XING Cheng1, JIANG Yi-jian1, 2. Laser-Induced Growth Device and Optical Properties of ZnO
Microcrystals[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3000-3005. |
[15] |
ZHANG Li-gang1, MA Li-hong1*, ZHAO Su-ling2, XU Zheng2, YANG Hai-jun1, LI Chen-pu1, WANG Ke1, LIU Gui-xia1, BAI Yong-qing1, SHEN Wen-mei1. Effect of Reaction Temperature on the Luminescence and Morphology of Na3ScF6∶Yb/Er Nanocrystals[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3068-3072. |
|
|
|
|