光谱学与光谱分析 |
|
|
|
|
|
Prediction of Total Nitrogen in Flue-Cured Tobacco with UV Spectrometry |
XIN Rong1,2, TANG Yan-lin1,2* |
1. Laboratory for Photoelectric Technology and Application, Guizhou Province, Guiyang 550025, China 2. College of Science, Guizhou University, Guiyang 550025, China |
|
|
Abstract Ultraviolet ( UV ) spectrum method was used to measure the spectra of flue-cured tobacco, and the spectra of different grades of flue-cured tobacco were compared. The samples were scanned in 210-360 nm with UV spectrometer. Further, the UV predicting models of total nitrogen of tobacco leaves were established by stepwise multiple regression method, principal components analytic method and partial least squares method. The results show that: (1) Predicting models of total nitrogen were established to adopt stepwise multiple regression method and principal components analytic method. (2) The models of total nitrogen of the different grade flue-cured tobacco established through scanning within the wavelength range of 230-290 nm were better for total nitrogen prediction. (3) The accuracy of total nitrogen prediction for flue-cured tobacco leaf with principal components analytic method was better than that of stepwise multiple regression method, and that of principal components analytic method is 78%. (4) The prediction model is different with different data treatment method. (5) The accuracy of prediction model could be improved by adopting fitting characteristic spectrum curve of total nitrogen. It is shown that the model of total nitrogen content prediction for flue-cured tobacco can be established by using UV spectrum. The model features good stability and can be used to determine accurately and speedily the total nitrogen content of flue-cured tobacco leaves without pollution.
|
Received: 2008-01-26
Accepted: 2008-05-02
|
|
Corresponding Authors:
TANG Yan-lin
E-mail: xinzyb123@126.com
|
|
[1] QIN Zhi-qiang, CAI Shao-song, XIE Hao, et al(秦志强,蔡绍松,谢 豪,等). Tobacco Science & Technology(烟草科技),2007,(2):30. [2] FU Qiu-juan, WANG Shu-sheng, DOU Yu-qing, et al(付秋娟,王树声,窦玉青, 等). Tobacco Science & Technology(烟草科技),2006,(10):35. [3] JIANG Jin-feng, ZHAO Ming-yue(蒋锦锋,赵明月). Acta Tabacaria Sinica(中国烟草学报),2006,12(2): 8. [4] LI Shi-yong, WANG Fang, SHAO Xue-guang(李世勇,王 芳,邵学广). Tobacco Science & Technology(烟草科技),2006,(1): 45. [5] WANG Jia-jun, LUO Li-ping, LI Hui, et al(王家俊,罗丽萍,李 辉, 等). Tobacco Science & Technology/Tobacco Chemistry(烟草科技),2004,(12): 24. [6] YUE Jun-ming, CHEN Ying, DING Ying(乐俊明,陈 鹰,丁 映). Guizhou Agricultural Sciences(贵州农业科学),2005,33(3): 62. [7] WANG Dong-dan, LI Tian-fei, WU Yu-ping(王东丹, 李天飞,吴玉萍, 等). Journal of Yunnan University(云南大学学报),2001,23(2):135. [8] HE Zhi-hui, LIAN Wen-liu, WU Ming-jian, et al(何智慧,练文柳,吴名剑, 等). Chinese Journal of Analytical Chemistry(分析化学研究简报),2006,34(5):702. [9] HE Zhi-hui, LIAN Wen-liu, CHEN Ya, et al(何智慧,练文柳,陈 亚, 等). Chinese Journal of Analysis Laboratory(分析试验室),2005,24(6):24. [10] ZHOU Han-ping, WANG Xin-min, SONG Ji-zhen, et al(周汉平,王信民,宋纪真, 等). Tobacco Science & Technology(烟草科技),2006,(1): 10. [11] XIA Bing-le, LI Min-li, LIU Qing-liang, et al(夏炳乐,李敏莉,刘清亮, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2004,24(7):830. [12] LI Hua, SUN Xin-qi, YANG Fu-lai(李 华,孙心齐,杨福来). Chinese Journal of Applied Chemistry(应用化学研究简报),1992,9(5):110. [13] HE Yu-ping, CUI Ya, WANG Shu-hua, et al(贺与平,崔 娅,王淑华, 等). Physical Testing and Chemical Analysis, Part B(理化检验-化学分册),2001,37(11):510,516. [14] YI Qiu-xiang, HUANG Jin-feng, WANG Xiu-zhen, et al(易秋香,黄敬峰,王秀珍, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2006,22(9): 138. [15] YANG Rui-kang, SHI Nai-jie(杨瑞康,史乃捷). Food & Fermentation Industries(食品与发酵工业),1991,17(6): 78. [16] YU An-fu, WU Su-hua(俞安复,吴素华). Metrology and Measurement Technique(计量与测试技术),1994,5: 22. [17] MA Chang-hua, LIAN Shan-zhi (马长华,连珊枝). Jorunal of Chinese Medicinal Materials(中药材), 1989,12(1):36. [18] WANG Rui-xin, HAN Fu-gen, YANG Su-qin(王瑞新,韩富根,杨素勤). Analytical Method of Quality of Tobacco Chemistry(烟草化学品质分析法). Zhengzhou: Henan Science and Technology Press(郑州:河南科学技术出版社),1990. 100, 122. [19] WANG Rui-xin(王瑞新). Tobacco Chemistry(烟草化学). Beijing: China Agricultural Publishing House(北京:中国农业出版社), 2003. 258, 283. [20] LIAN Wen-liu, WU Ming-jian,SUN Xian-jun, et al(练文柳,吴名剑,孙贤军, 等). Tobacco Science & Technology(烟草科技),2005,(2):19. [21] MA Xiang, GONG Yi, WEN Ya-dong, et al(马 翔,工 毅,温亚东, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2004,24(4):444.
|
[1] |
ZHANG Juan-juan1, 2, NIU Zhen1, 2, MA Xin-ming1, 2, WANG Jian1, XU Chao-yue1, 2, SHI Lei1, 2, Bação Fernando3, SI Hai-ping1, 2*. Hyperspectral Feature Extraction and Estimation of Soil Total Nitrogen Based on Discrete Wavelet Transform[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3223-3229. |
[2] |
ZHANG Xue-fei1, DUAN Ning1, 2*, JIANG Lin-hua1, 2*, CHENG Wen2, YU Zhao-sheng3, LI Wei-dong2, ZHU Guang-bin4, XU Yan-li2. Study on Stability and Sensitivity of Deep Ultraviolet Spectrophotometry Detection System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3802-3810. |
[3] |
YANG Xin1, 2, YUAN Zi-ran1, 2, YE Yin1, 2*, WANG Dao-zhong1, 2, HUA Ke-ke1, 2, GUO Zhi-bin1, 2. Winter Wheat Total Nitrogen Content Estimation Based on UAV
Hyperspectral Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3269-3274. |
[4] |
BAI Zi-jin1, PENG Jie1*, LUO De-fang1, CAI Hai-hui1, JI Wen-jun2, SHI Zhou3, LIU Wei-yang1, YIN Cai-yun1. A Mid-Infrared Spectral Inversion Model for Total Nitrogen Content of Farmland Soil in Southern Xinjiang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2768-2773. |
[5] |
CHEN Feng-xia1, YANG Tian-wei2, LI Jie-qing1, LIU Hong-gao3, FAN Mao-pan1*, WANG Yuan-zhong4*. Identification of Boletus Species Based on Discriminant Analysis of Partial Least Squares and Random Forest Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 549-554. |
[6] |
LU Li-min, SHI Bin, TANG Tian-yu, ZHAO Xian-hao, WEI Xiao-nan, TANG Yan-lin*. Spectral Analysis of Epinephrine Molecule Based on Density Functional Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 248-252. |
[7] |
LIN Yan1, SU Jun-hong1*, TANG Yan-lin2, YANG Dan3. Ultraviolet Spectrum and Excitation Properties Calculations of Vitamin C Based on Density Functional Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 304-309. |
[8] |
XU Hui-hua, SHI Dong-po*, WU Hao, YIN Xian-qing, ZHENG Yan-cheng, CHEN Wu, LI Geng. Influence of AEO-9 on Ultraviolet Absorbance Spectrum of TDBAC Reduced by β-CD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3931-3935. |
[9] |
YANG Lu-ze, LIU Miao*. Construction of a 3D-QSAR Model With Dual Spectral Effects and Its Application in Molecular Modification of Environmentally Friendly PBBs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 430-434. |
[10] |
TONG Ang-xin, TANG Xiao-jun*, ZHANG Feng, WANG Bin. Species Identification of NaCl, NaOH and β-Phenylethylamine Based on Ultraviolet Spectrophotometry and Supervised Pattern Recognition Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 448-453. |
[11] |
SHA Yun-fei1, HUANG Wen1, WANG Liang1, LIU Tai-ang2,YUE Bao-hua2, LI Min-jie2, YOU Jing-lin2, GE Jiong1*, XIE Wen-yan1*. Merging MIR and NIR Spectral Data for Flavor Style Determination[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 473-477. |
[12] |
SUN Zhi-wei1, WANG Xiao-lin1, ZHANG Qi-ming2, YUAN Ju-min2, ZHANG Shuang1, YAN Hui-feng1*, WANG Shu-sheng1*. Diagnosis of Nitrogen Nutrition in Flue-Cured Tobacco Based on UAV Visible Spectrum Platform[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 586-591. |
[13] |
CHEN Ying1,XU Yang-mei1, DI Yuan-jian1,CUI Xing-ning1,ZHANG Jie1,ZHOU Xin-de1,XIAO Chun-yan2, LI Shao-hua3. COD Concentration Prediction Model Based on Multi-Spectral Data Fusion and GANs Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 188-193. |
[14] |
YANG Hui-qin1, 2, ZHANG Bo1, 2, MA Ling1, 2, SHANG Yi1, 2, GAO Dong-li1, 2*. Extraction and Spectroscopic Analysis of Chlorogenic Acid in Diploid Potato[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3860-3864. |
[15] |
LIU Cui-ying1, ZHANG Jin-rui2, ZENG Tao1, FAN Jian-ling2*. Determination of Soil Organic Carbon and Total Nitrogen Contents in Aggregate Fractions From Fourier Transform Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3818-3824. |
|
|
|
|