光谱学与光谱分析 |
|
|
|
|
|
Research on In-Situ Monitoring of SO2 Concentration in the Flue Gases with DOAS Method Based on Algorithm Fusion |
TANG Guang-hua, XU Chuan-long, SHAO Li-tang, YANG Dao-ye, ZHOU Bin, WANG Shi-min |
School of Energy and Environment, Southeast University, Nanjing 210096, China |
|
|
Abstract Valuable achievements on differential optical absorption spectroscopy (DOAS) for monitoring atmospheric pollutants gas have been made in the past decades. Based on the idea of setting the threshold according to the maximum value, symbolized as OD′m, of differential optical density, the algorithm of traditional DOAS was combined with the DOAS algorithm based on the kalman filtering to improve the detection limit without losing measurement accuracy in the present article. Two algorithms have different inversion accuracy at the same ratio of signal to noise and the problem of inversion accuracy was well resolved by combining two algorithms at short light path length. Theoretical and experimental research on the concentration measurement of SO2 in the flue gases was carried out at the normal temperature and atmospheric pressure. The research results show that with the OD′m less than 0.048 1, the measurement precision is very high for SO2 with the improved DOAS algorithm. The measurement lower limit of SO2 is less than 28.6 mg·m-3 and the zero drift of the system is less than 2.9 mg·m-3. If the OD′m is between 0.048 1 and 0.927 2, the measurement precision is high with the traditional DOAS algorithm. However, if the OD′m is more than 0.922, the errors of measurement results for both two DOAS algorithms are very large and the linearity correction must be performed.
|
Received: 2008-06-18
Accepted: 2008-09-20
|
|
Corresponding Authors:
TANG Guang-hua
E-mail: tgh164@163.com
|
|
[1] XU Xiang-de, ZHOU Xiu-ji, SHI Xiao-hui(徐祥德, 周秀骥, 施晓晖). Science in China, Ser. D(中国科学D辑), 2005, 35(supplement 1): 1. [2] State Environmental Protection Administration, General Administration of Quality Supervision, Inspection and Quarantine(国家环境保护总局, 国家质量监督检验检疫总局). China Cement(中国水泥), 2005, (2): 7. [3] Kim K H, Kim M Y. Atmospheric Environ., 2001, 35: 4059. [4] Platt U, Perner D, et al. J. Geophys. Res., 1979, 84(10): 6329. [5] Platt U. Chemical Analysis Series. New York: John Wiley & Sons, Inc., 1994. [6] Platt U, Perner D, Harris G W. Geophys. Res. Lett., 1980, 7: 89. [7] Platt U, Perner D. J. Geophys. Res., 1980, 85(12): 7453. [8] PENG Fu-min, XIE Pin-hua, SHAO Shi-yong, et al(彭夫敏, 谢品华, 邵士勇, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2008, 28(3): 507. [9] XIE Pin-hua, FU Qiang, LIU Jian-guo, et al(谢品华, 付 强, 刘建国, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2006, 26(9): 1584. [10] TANG Guang-hua, XU Chuan-long, SHAO Li-tang, et al(汤光华, 许传龙, 邵理堂, 等). Journal of Engineering Thermophysics(工程热物理学报), 2008, 29(3): 456. [11] TANG Guang-hua, XU Chuan-long, SHAO Li-tang, et al(汤光华, 许传龙, 邵理堂, 等). Chinese Journal of Aparatus and Instrument(仪器仪表学报), 2008, 29(2): 244. [12] Mellqvist J, Rosen A. Journal of Quantitative Spectroscopy and Radiative Transfer, 1996, 56(2): 209. [13] Vanveen E H, Oukes F J, Deloosvollebregt M T C. Spectrochimca Acta, 1990, 45B: 1109. [14] Vanveen E H, Deloosvollebregt M T C. Analytical Chemistry, 1991, 63: 1441. [15] Vanveen V H, Bosch S, Deloosvollebregt M T C. Spectrochimca Acta, 1993, 48B: 1691. [16] SHEN Lan-sun, et al(沈兰荪, 等). ICP-AES: Compensation of Spectral Interference(ICP-AES: 光谱干扰校正方法的研究). Beijing: Beijing University of Technology Press(北京: 北京工业大学出版社), 1997. 134.
|
[1] |
ZHENG Ni-na1, 2*, XIE Pin-hua1, QIN Min1, DUAN Jun1. Research on the Influence of Lamp Structure of the Combined LED Broadband Light Source on Differential Optical Absorption Spectrum
Retrieval and Its Removing Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3339-3346. |
[2] |
DUAN Ming-xuan1, LI Shi-chun1, 2*, LIU Jia-hui1, WANG Yi1, XIN Wen-hui1, 2, HUA Deng-xin1, 2*, GAO Fei1, 2. Detection of Benzene Concentration by Mid-Infrared Differential
Absorption Lidar[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3351-3359. |
[3] |
CHANG Zhen1, ZHONG Ming-yu2*, SU Jing-ming1, 2, SI Fu-qi1, WANG Yu3, ZHOU Hai-jin1, DOU Ke1, ZHANG Quan1. Study on the Reconstructing the NO2 Gas Distribution in a Vertical Plane Using MAX-DOAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2413-2418. |
[4] |
PU Gui-juan1, 2, CHENG Si-yang3*, LI Song-kui4, LÜ Jin-guang2, CHEN Hua5, MA Jian-zhong3. Spectral Inversion and Variation Characteristics of Tropospheric NO2
Column Density in Lhasa, Tibet[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1725-1730. |
[5] |
ZHANG Zhi-dong1, 2, XIE Pin-hua1, 2, 3*, LI Ang2, QIN Min2, FANG Wu2, DUAN Jun2, HU Zhao-kun2, TIAN Xin4LÜ Yin-sheng1, 2, REN Hong-mei2, REN Bo1, 2, HU Feng1, 2. Study of SO2 and NOx Distribution and Emission in Tangshan Based on Mobile DOAS Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1651-1660. |
[6] |
REN Hong-mei1, 2, LI Ang1*, HU Zhao-kun1, XIE Pin-hua1, 2, 3, XU Jin1, HUANG Ye-yuan1, 2, LI Xiao-mei1, 2, ZHONG Hong-yan1, 4, ZHANG Hai-rong1, 2, TIAN Xin1, 4, REN Bo2, ZHENG Jiang-yi1, 2, WANG Shuai5, CHAI Wen-xuan5. Measurement of Water Vapor Absorption in the Ultraviolet Band Using MAX-DOAS and Evaluation of Its Influence on DOAS Retrieval[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3314-3320. |
[7] |
XU Heng1, LIU Hao-ran1*, JI Xiang-guang2, LI Qi-hua1, LIU Guo-hua1, OU Jin-ping1, ZHU Peng-cheng1. Study on the Tropospheric Column Density of NO2 in Shanghai Based on MAX-DOAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2720-2725. |
[8] |
TIAN Xin1, 3, REN Bo3, 5, XIE Pin-hua1, 3, 4, 5, MOU Fu-sheng2*, XU Jin3, LI Ang3, LI Su-wen2, ZHENG Jiang-yi3LI Xiao-mei3, REN Hong-mei3, HUANG Xiao-hui1, PAN Yi-feng1, TIAN Wei1. Study on Vertical Distribution of Atmospheric HONO in Winter Based on Multi-Axis Differential Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2039-2046. |
[9] |
SU Jing-ming1, 2, 3, ZHAO Min-jie1, ZHOU Hai-jin1, YANG Dong-shang1, 2, HONG Yan3, SI Fu-qi1*. On-Orbit Degradation Monitoring of Environmental Trace Gases Monitoring Instrument Based on Level 0 Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 686-691. |
[10] |
XI Liang1,2, SI Fu-qi1*, JIANG Yu1, ZHOU Hai-jin1, QIU Xiao-han1, CHANG Zhen1. Ground-Based IDOAS De-Striping by Weighted Unidirectional Variation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 627-633. |
[11] |
LIU Guo-hua, LI Qi-hua*, OU Jin-ping, XU Heng, ZHU Peng-cheng, LIU Hao-ran. Passive Spectrum Measurement of HCHO in Chongqing Area Based on MAX-DOAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 243-247. |
[12] |
CHENG Liang-xiao1, 2, TAO Jin-hua1*, ZHOU Hai-jin3, YU Chao1, FAN Meng1, WANG Ya-peng4, WANG Zhi-bao5, CHEN Liang-fu1. Evaluations of Environmental Trace Gases Monitoring Instrument (EMI) Level 1 Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3881-3886. |
[13] |
ZHU Peng-cheng1, LIU Hao-ran1*, JI Xiang-guang2, LI Qi-hua1, LIU Guo-hua1, TIAN Yuan1, XU Heng1. Study on Measurement of Troposphereic NO2 in Beijing by MAX-DOAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2153-2158. |
[14] |
JIA Gui-hong1, 2*, ZHANG Jian-jun1, ZHENG Hai-ming2. Research on FFT+FT Spectrum Zooming Method for Differential Optical Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2116-2121. |
[15] |
ZHONG Ming-yu1, 2, 3, ZHOU Hai-jin2, SI Fu-qi2*, WANG Yu2, DOU Ke2, SU Jing-ming1, 2, 3. Reconstruction of Stack Plume Based on Imaging Differential Absorption Spectroscopy and Compressed Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1708-1712. |
|
|
|
|