光谱学与光谱分析 |
|
|
|
|
|
Mean Shift Based Auto-Extraction of Spectral Lines for Non-Emission-Line Objects |
DUAN Fu-qing1, WU Fu-chao1, LUO A-li2, ZHAO Yong-heng2 |
1. National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China 2. National Observatory of Beijing, Chinese Academy of Sciences, Beijing 100012, China |
|
|
Abstract The mean shift algorithm is used. At first, the property that mean shift vectors always point toward local maxima of the density is used to get the pseudo continuum; secondly, mean shift filtering is a good edge preserving smoothing, which can adaptively reduce the amount of smoothing near feature spectral lines, so the authors use mean shift filtering in noise reduction after the normalization of continuum spectra; finally, the authors extract feature spectral lines by setting local thresholds. The experiments on both stars and normal galaxies show that our method can extract spectral lines accurately, which is helpful to the parameter measure and the automatic classification of spectra based on spectral lines.
|
Received: 2004-08-21
Accepted: 2005-01-10
|
|
Corresponding Authors:
DUAN Fu-qing
|
|
Cite this article: |
DUAN Fu-qing,WU Fu-chao,LUO A-li, et al. Mean Shift Based Auto-Extraction of Spectral Lines for Non-Emission-Line Objects [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2005, 25(11): 1884-1888.
|
|
|
|
URL: |
https://www.gpxygpfx.com/EN/Y2005/V25/I11/1884 |
[1] ZHAO Rui-zhen, HU Zhan-yi, ZHAO Yong-heng(赵瑞珍,胡占义,赵永恒). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2005,25(1):153. [2] Pelt J. Bull. Inf. CDS, 1990, (38): 95. [3] ZHOU Hong, HUANG Ling-yun, LUO Man-li(周 虹,黄凌云,罗曼丽). J. of Electronics(电子科学学刊), 2000, 22(4): 529. [4] Fukunaga K,Hostetler L D. IEEE Trans. Information Theory, 1975, 21: 32. [5] Comaniciu D, Meer P. IEEE Trans. On PAMI, 2002, 24(5): 603. [6] Sheather S J, Jones M C. J. R. Statist. Soc. B, 1991, 53(3):683. [7] QIU Bo, HU Zhan-yi, ZHAO Yong-heng(邱 波,胡占义,赵永恒). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2002, 22 (4): 695. [8] DUAN Fu-qing, WU Fu-chao (段福庆,吴福朝). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 待发表. |
[1] |
FAN Ping-ping,LI Xue-ying,QIU Hui-min,HOU Guang-li,LIU Yan*. Spectral Analysis of Organic Carbon in Sediments of the Yellow Sea and Bohai Sea by Different Spectrometers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 52-55. |
[2] |
YANG Chao-pu1, 2, FANG Wen-qing3*, WU Qing-feng3, LI Chun1, LI Xiao-long1. Study on Changes of Blue Light Hazard and Circadian Effect of AMOLED With Age Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 36-43. |
[3] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[4] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[5] |
LIANG Jin-xing1, 2, 3, XIN Lei1, CHENG Jing-yao1, ZHOU Jing1, LUO Hang1, 3*. Adaptive Weighted Spectral Reconstruction Method Against
Exposure Variation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3330-3338. |
[6] |
MA Qian1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, CHENG Hui-zhu1, 2, ZHAO Yan-chun1, 2. Research on Classification of Heavy Metal Pb in Honeysuckle Based on XRF and Transfer Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2729-2733. |
[7] |
HUANG Chao1, 2, ZHAO Yu-hong1, ZHANG Hong-ming2*, LÜ Bo2, 3, YIN Xiang-hui1, SHEN Yong-cai4, 5, FU Jia2, LI Jian-kang2, 6. Development and Test of On-Line Spectroscopic System Based on Thermostatic Control Using STM32 Single-Chip Microcomputer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2734-2739. |
[8] |
ZHENG Yi-xuan1, PAN Xiao-xuan2, GUO Hong1*, CHEN Kun-long1, LUO Ao-te-gen3. Application of Spectroscopic Techniques in Investigation of the Mural in Lam Rim Hall of Wudang Lamasery, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2849-2854. |
[9] |
WANG Jun-jie1, YUAN Xi-ping2, 3, GAN Shu1, 2*, HU Lin1, ZHAO Hai-long1. Hyperspectral Identification Method of Typical Sedimentary Rocks in Lufeng Dinosaur Valley[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2855-2861. |
[10] |
WANG Jing-yong1, XIE Sa-sa2, 3, GAI Jing-yao1*, WANG Zi-ting2, 3*. Hyperspectral Prediction Model of Chlorophyll Content in Sugarcane Leaves Under Stress of Mosaic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2885-2893. |
[11] |
WANG Yu-qi, LI Bin, ZHU Ming-wang, LIU Yan-de*. Optimizations of Sample and Wavelength for Apple Brix Prediction Model Based on LASSOLars Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1419-1425. |
[12] |
LI Shuai-wei1, WEI Qi1, QIU Xuan-bing1*, LI Chuan-liang1, LI Jie2, CHEN Ting-ting2. Research on Low-Cost Multi-Spectral Quantum Dots SARS-Cov-2 IgM and IgG Antibody Quantitative Device[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1012-1016. |
[13] |
JIN Cui1, 4, GUO Hong1*, YU Hai-kuan2, LI Bo3, YANG Jian-du3, ZHANG Yao1. Spectral Analysis of the Techniques and Materials Used to Make Murals
——a Case Study of the Murals in Huapen Guandi Temple in Yanqing District, Beijing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1147-1154. |
[14] |
DING Kun-yan1, HE Chang-tao2, LIU Zhi-gang2*, XIAO Jing1, FENG Guo-ying1, ZHOU Kai-nan3, XIE Na3, HAN Jing-hua1. Research on Particulate Contamination Induced Laser Damage of Optical Material Based on Integrated Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1234-1241. |
[15] |
ZHANG Bao-ping1, NING Tian1, ZHANG Fu-rong1, CHEN Yi-shen1, ZHANG Zhan-qin2, WANG Shuang1*. Study on Raman Spectral Characteristics of Breast Cancer Based on
Multivariable Spectral Data Analysis Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 426-434. |
|
|
|
|