|
|
|
|
|
|
Research on Satellite Greenhouse Gas Remote Sensing Retrieval Methods Based on Machine Learning |
SHENG Shu-li1, ZOU Ming-min1, 2*, LIU Tian-qi1, CHENG Yong-ping1, CHEN Zi-zheng1, WANG Xu-wen1 |
1. Institute of Material Science and Information Technology, Anhui University, Hefei 230601, China
2. Anhui Provincial Laboratory of Information Materials and Intelligent Perception, Anhui University, Hefei 230601, China
|
|
|
Abstract Greenhouse-gas satellite remote sensing provides vital data support for climate-change research. Accurately obtaining the spatiotemporal distribution of greenhouse gas concentrations is key for effective carbon emission accounting. This study aims to develop a satellite-based greenhouse-gas retrieval model using machine-learning methods, enabling rapid and high-precision inversion of column-averaged dry-air mixing ratios (XCO2 and XCH4). First, a training dataset was constructed using an atmospheric radiative-transfer model combined with measurements from the Total Carbon Column Observing Network (TCCON). Next, a one-dimensional convolutional neural network (1D CNN) was employed as the machine-learning method. The model leveraged Adaptive Moment Estimation (Adam) and Bayesian Optimization (BO) during training. Its performance was compared to that of Random Forest (RF) and Backpropagation Neural Network (BPNN) models. Results showed that the 1D-CNN model achieved correlation coefficients of 0.953 1 for XCO2 and 0.957 3 for XCH4 on the test dataset, outperforming both RF and BPNN. Finally, high-spectral-resolution observations from the Chinese GF-5B satellite's Greenhouse gases Monitoring Instrument (GMI/GF-5B) were used to retrieve global XCO2 and XCH4 for 2022—2024. Comparisons with data from nine TCCON stations demonstrated strong agreement: the correlation coefficients exceeded 0.938 5 for XCO2 and 0.959 8 for XCH4. Overall retrieval errors were within 2 ppm for XCO2 (with 99.15% of validation samples showing errors below 1.5 ppm) and within 10 ppb for XCH4.
|
Received: 2025-02-17
Accepted: 2025-06-11
|
|
Corresponding Authors:
ZOU Ming-min
E-mail: zoumm@ahu.edu.cn
|
|
[1] YANG Xiao-yu, WANG Zhong-ting, PAN Guang, et al(杨晓钰, 王中挺, 潘 光). Journal of Atmospheric and Environmental Optics(大气与环境光学学报), 2022, 17(6): 581.
[2] Liu Yi, Lu Daren, Chen Hongbin, et al. Remote Sensing Technology and Application, 2011, 26(2): 247.
[3] Lopez F P A, Zhou G, Jing G, et al. Remote Sensing, 2022, 14(11): 2622.
[4] WANG Lei, HUAN Ke-wei, LIU Xiao-xi(王 磊, 宦克为, 刘小溪). National Analytical Chemistry Bulletin(分析化学), 2022, 50(12): 1918.
[5] PENG Hao-jie, ZHOU Yang, HU Xiao-fei(彭豪杰, 周 杨, 胡校飞). Journal of Remote Sensing(遥感学报), 2023, 27(2): 430.
[6] MIAO Yun-fei, ZOU Ming-min, SHENG Shu-li, et al(缪云飞, 邹铭敏, 盛书丽, 等). China Environmental Science(中国环境科学), 2023, 43(S1): 20.
[7] Li K, Bai K, Jiao P, et al. Remote Sensing of Environment, 2024, 304: 114039.
[8] LI Jing-bo, ZHANG Ying, GAI Rong-li(李静波, 张 莹, 盖荣丽). China Environmental Science(中国环境科学), 2023, 43(4): 1499.
[9] Zhao Z, Xie F, Ren T, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 278: 108006.
[10] Zhang W, Wang Z, Li T, et al. Atmosphere, 2025, 16(3): 238.
[11] Huang X, Deng Z, Jiang F, et al. Geophysical Research Letters, 2024, 51(8): e2023GL107536.
[12] Gong X, Zhang Y, Fan M, et al. Atmosphere, 2024, 15(1): 118.
[13] YE Han-han, WANG Xian-hua, WU Shi-chao, et al(叶函函, 王先华, 吴时超, 等). Journal of Atmospheric and Environmental Optics(大气与环境光学学报), 2021, 16(3): 231.
[14] Liu Shuanghui, Li Xiaoying, Cao Xifeng. Remote Sensing Technology and Application, 2022, 37(2): 436.
[15] LI Yun-fei, LI Jun, HE Lin(李云飞, 李 军, 贺 霖). Journal of Remote Sensing(遥感学报), 2022, 26(8): 1614.
[16] TANG Yong-sheng, CHEN Zheng-guang(唐永生, 陈争光). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 41(3): 892.
[17] Saberioon M, Gholizadeh A, Ghaznavi A, et al. Computers and Electronics in Agriculture, 2024, 227: 109494.
[18] Wu Lijun, Wang Baoxing, Zhang Lei, et al. Journal of Near Infrared Spectroscopy, 2020, 28(3): 153.
[19] Yoshida Y, Kikuchi N, Morino I, et al. Atmospheric Measurement Techniques, 2013, 6(6): 1533.
[20] GAO Xiao-hong, YANG Yang, ZHANG Wei, et al(高小红, 杨 扬, 张 威, 等). Remote Sensing Technology and Application(遥感技术与应用), 2015, 30(5): 849.
[21] Zhao R, Liu L, Liu X, et al. Nuclear Science and Techniques, 2025, 36(2): 29.
[22] LI Qin-qin, WANG Xian-hua, YE Han-han, et al(李勤勤, 王先华, 叶函函, 等). Acta Optica Sinica(光学学报), 2020, 40(6): 26. |
[1] |
LI Chang-sheng, GAO Shu-hui*, LI Kai-kai. Feature Analysis and Classification of the Line-Crossing Sequences
Between Stamp Inks and Laser Printing Toner Based on
Hyperspectral Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2804-2815. |
[2] |
WU Qiang1, YANG Mo-han1, DUAN Feng-hui1, WANG Zan-pu2, KANG Jia-kun1, YANG Hao3, YANG Gui-jun3, ZHANG Zhi-yong1, MA Xin-ming1, CHENG Jin-peng1*. Accurate Estimation of Maize Above-Ground Biomass Using Integrated Multispectral and LiDAR Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2906-2914. |
[3] |
LIU En-qin1, 2, HUANG Wei3, XU Yong3, YANG Man2, GAO Bing2, MO Ding-ru4. Hyperspectral Camouflaged Identification Driven by Spatial-Spectral
Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2942-2949. |
[4] |
WEN Zhu1, GUO Song1, SHU Tian1, ZHAO Long-cai2, 3. Hyperspectral Estimation of Selenium Content in Selenium-Rich Tea Based on Feature Selection and Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(09): 2590-2596. |
[5] |
KONG Ling-yuan1, 2, HUANG Qing-feng1, 2, NI Chen1, 2, XU Jia-jia1, 2, TANG Xue-hai1, 2*. Estimation of Nitrogen Content of Carya illinoinensis Leaves Based on Canopy Hyperspectral and Wavelet Transform at Different Flight Heights[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(08): 2200-2209. |
[6] |
WU Qiang1, LU Ling2, FENG Xiao-juan2, WANG Meng2, WANG Yong-long2, HOU Ding-yi3, FAN Bo-bo2*, LIU Jie2*. Hyperspectral Identification and Classification of Different Cultivation Methods of A. mongholicus[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(07): 1842-1847. |
[7] |
JIANG Heng1, LÜ Zi-wei1, LI Yang2, DONG Tuo1*. A Novel Strategy for Viral Detection in Acute Respiratory Infections: Combining SERS With Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1217-1224. |
[8] |
LI Ruo-tong1, HU Hui-qiang2, CAO Shi-yu1, LU Meng-yao1, LIU Meng-ran1, FU Jia-yue1, MAO Xiao-bo2, WANG Hai-bo3*, FU Ling1, 3*. Identification of Pinelliae Rhizoma Decoction Pieces by Hyperspectral
Imaging Combined With Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1236-1242. |
[9] |
DENG Ying-jiao1, CHEN Jun2, WANG Jian-sheng1, HU Liu-ping3, ZHANG Qing1, DU Yu-zhen3, WANG Yan1, LI Qing-li1*. Analysis of Urine Sediment Samples Based on Microscopy Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1243-1250. |
[10] |
LI Wei-yan1, TENG Jing2*, ZHENG Zhi-hui3, 4, SHI Jing-jing4, SHI Yao4*, LI Zhi-hong4, ZHANG Chen-mu4. Rapid Classification and Identification of Heavy Metal-Containing
Electroplating Sludge by Combining EDXRF With Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1283-1289. |
[11] |
LIU Chang-qing, LING Zong-cheng*. LIBS Quantitative Analysis of Martian Analogues Library (MAL)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(03): 717-725. |
[12] |
NI Qin-ru1, OU Quan-hong1*, SHI You-ming2, LIU Chao3, ZUO Ye-hao1, ZHI Zhao-xing1, REN Xian-pei4, LIU Gang1. Diagnosis of Lung Cancer by Human Serum Raman Spectroscopy
Combined With Six Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(03): 685-691. |
[13] |
XIAO Zhong-liang, YUAN Rong-yao, FU Zhuang, LIU Cheng, YIN Bi-lu, XIAO Min-zhi, ZHAO Ting-ting, KUANG Yin-jie, SONG Liu-bin*. Study on the Aging Behavior of Transformer Oil Based on Machine
Learning and Infrared Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 434-442. |
[14] |
JU Lei1, YU Jie1, WU Yan-miao2, LI Li2, LU Tian3, DING Ya-ping2, SHU Ru-xin1*. Comparative Study of Hyperspectral Preprocessing Methods and Multiple Models in Classification and Discrimination[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 125-132. |
[15] |
XU Yang1, MAO Yi-lin1, LI He1, WANG Yu1, WANG Shuang-shuang2, QIAN Wen-jun1, DING Zhao-tang2*, FAN Kai1*. Multispectral and Hyperspectral Prediction Models of REC, SPAD and MDA in Overwintered Tea Plant[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 256-263. |
|
|
|
|