|
|
|
|
|
|
Characterization of Pyrolytic Properties of Clay Minerals Based on Terahertz-Thermogravimetric Spectroscopy |
LI Xin-yu1, LIU Cai-qin1, HUANG Hao-chong1*, ZHENG Zhi-yuan1*, ZHANG Zi-li1, QIU Kun-feng2 |
1. School of Science, China University of Geosciences (Beijing), Beijing 100083, China
2. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
|
|
|
Abstract Clay minerals are essential components of clay rocks and soils, forming the primary constituents of various terrestrial surface coverings. Studying their structural attributes, particle dimensions, and moisture content variations is crucial for understanding environmental dynamics in clay mineral-rich regions and guiding mineral industry applications. Due to diverse geological applications and practical requirements, traditional mineral characterization methods often have limited applicability for mining minerals with distinct physical properties. Terahertz spectroscopy technology, a novel non-contact coherent testing method, utilizes fingerprint spectra, wide spectra, and water sensitivity within this frequency band. This technology enables the non-destructive detection of clay minerals, providing optical information to differentiate their crystal structure and composition. This article primarily focuses on using terahertz time-domain spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy to study the thermal decomposition characteristics of clay minerals. The composition, particle size, and calcination products of kaolin, a vital raw material significantly influence the quality of ceramics. Experimental results confirm substantial variations in the absorption coefficient and refractive index of different states of kaolin within the terahertz frequency range. Differences in the crystal structure of talc and vermiculite, belonging to the 2∶1 type layer silicate, result in significant disparities in their terahertz spectra, effectively indicating thermal decomposition byproducts and moisture content in conventional electrically neutral hydrous minerals. Contrary to conventional understanding, vermiculite exhibits peaks at 1.10 THz without chemical interventions. The appearance of this can facilitate substance characterization and advance optical devices while enhancing the understanding of minerals in terahertz spectroscopy. This offers a fresh research perspective for the interdisciplinary investigation of terahertz spectroscopy and geology.
|
Received: 2023-10-08
Accepted: 2024-06-04
|
|
Corresponding Authors:
HUANG Hao-chong, ZHENG Zhi-yuan
E-mail: hchhuang@cugb.edu.cn;zhyzheng@cugb.edu.cn
|
|
[1] Bibi I,Icenhower J, Niazi N K, et al. Environmental Materials and Waste,2016, (Chapter 21): 543. http://dx.doi.org/10.1016/B978-0-12-803837-6.00021-4.
[2] Huang H C, Qiu P Y, Panezai S, et al. Optics & Laser Technology, 2019, 120: 105683.
[3] Huang H C, Yuan E H, Zhang D S, et al. Crystal Growth & Design, 2023, 23(11): 7992.
[4] Zacher T, Hronsky V, Naftaly M, et al. Applied Clay Science, 2017, 135: 475.
[5] Zhan H L, Wang Y, Chen M X, et al. Energy, 2020, 190(01): 116343.
[6] MA Yuan-yuan, HUANG Hao-chong, HAO Si-bo, et al(马媛媛,黄昊翀,郝思博,等). Chinese Physics B(中国物理B), 2019, 28(6): 060702.
[7] Li S S, Qiu K F, Hernández-Uribe D, et al. Journal of Geophysical Research: Solid Earth, 2023, 128(3): e2022JB025915.
[8] Naijian F, Rudi H, Resalati H, et al. Applied Clay Science, 2019, 182: 105258.
|
[1] |
KE Zhi-lin1, DONG Bing2, LING Dong-xiong2*, WEI Dong-shan2, 3*. Progress on Terahertz Spectroscopy Detection of Glass Transition of
Polymers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2709-2716. |
[2] |
HE Yu-xin1, YANG Li-jun1*, YU Hua2, CHEN Qi-yu1, CHENG Li1, LIAO Rui-jin1. New Nondestructive Method of Methanol Detection in Insulating Oil Based on Terahertz Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1405-1411. |
[3] |
XU Qiu-yi1, 3, 4, ZHU Wen-yue3, 4, CHEN Jie2, 3, 4, LIU Qiang3, 4 *, ZHENG Jian-jie3, 4, YANG Tao2, 3, 4, YANG Teng-fei2, 3, 4. Calibration Method of Aerosol Absorption Coefficient Based on
Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 88-94. |
[4] |
YU Yang1, ZHANG Zhao-hui1, 2*, ZHAO Xiao-yan1, ZHANG Tian-yao1, LI Ying1, LI Xing-yue1, WU Xian-hao1. Effects of Concave Surface Morphology on the Terahertz Transmission Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2843-2848. |
[5] |
YAN Li-dong1, ZHU Ya-ming1*, CHENG Jun-xia1, GAO Li-juan1, BAI Yong-hui2, ZHAO Xue-fei1*. Study on the Correlation Between Pyrolysis Characteristics and Molecular Structure of Lignite Thermal Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 962-968. |
[6] |
CHU Zhi-hong1, 2, ZHANG Yi-zhu2, QU Qiu-hong3, ZHAO Jin-wu1, 2, HE Ming-xia1, 2*. Terahertz Spectral Imaging With High Spatial Resolution and High
Visibility[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 356-362. |
[7] |
LU Xue-jing1, 2, GE Hong-yi2, 3, JIANG Yu-ying2, 3, ZHANG Yuan3*. Application Progress of Terahertz Technology in Agriculture Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3330-3335. |
[8] |
TANG Xin, ZHOU Sheng-ling*, ZHU Shi-ping*, MA Ling-kai, ZHENG Quan, PU Jing. Analysis and Identification of Terahertz Tartaric Acid Spectral
Characteristic Region Based on Density Functional Theory and
Bootstrapping Soft Shrinkage Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2740-2745. |
[9] |
LI Yan1, LIU Qi-hang2, 3, HUANG Wei1, DUAN Tao1, CHEN Zhao-xia1, HE Ming-xia2, 3, XIONG Yu1*. Terahertz Imaging Study of Dentin Caries[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2374-2379. |
[10] |
HU Chao-shuai1, XU Yun-liang1, CHU Hong-yu1, CHENG Jun-xia1, GAO Li-juan1, ZHU Ya-ming1, 2*, ZHAO Xue-fei1, 2*. FTIR Analysis of the Correlation Between the Pyrolysis Characteristics and Molecular Structure of Ultrasonic Extraction Derived From Mid-Temperature Pitch[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 889-895. |
[11] |
CHEN Yan-ling, CHENG Liang-lun*, WU Heng*, XU Li-min, HE Wei-jian, LI Feng. A Method of Terahertz Spectrum Material Identification Based on Wavelet Coefficient Graph[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3665-3670. |
[12] |
GAO Jian-kui1,2, LI Yi-jie3, ZHANG Qin-nan1, LIU Bing-wei1, LIU Jing-bo1, LING Dong-xiong1, LI Run-hua2, WEI Dong-shan1*. Temperature Effects on the Terahertz Spectral Characteristics of PEEK[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3347-3351. |
[13] |
LIU Yan-de, XU Zhen, HU Jun, LI Mao-peng, CUI Hui-zhen. Research on Variety Identification of Fritillaria Based on Terahertz Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3357-3362. |
[14] |
BAI Jun-peng1, 2, LI Bin1*, ZHANG Shu-juan2, CHEN Yi-mei1. Study on Norfloxacin Concentration Detection Based on Terahertz Time Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2710-2716. |
[15] |
WANG Wen-ai, LIU Wei*. Terahertz Spectroscopy Characteristics of Sugar Compounds[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2391-2396. |
|
|
|
|